Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corralling the carbon cycle

14.11.2008
Scientists may have overcome a major hurdle to calculating how much carbon dioxide (CO2) is absorbed and released by plants, vital information for understanding how the biosphere responds to stress and for determining the amount of carbon that can be safely emitted by human activities.

The problem is that ecosystems simultaneously take up and release CO2. The key finding is that the compound carbonyl sulfide, which plants consume in tandem with CO2, can be used to quantify gas flow into the plants during photosynthesis. The research is published in the November 14, issue of Science.

"In photosynthesis, plants 'breath' in carbon dioxide from the atmosphere and, with sunlight energy, convert it and water into food and oxygen, which they then 'exhale,'" explained co-author Joe Berry from the Carnegie Institution's Department of Global Ecology. "In ecosystems, plants and other organisms respire producing carbon dioxide. We can measure the net change in CO2, but we do not have an accurate way to measure how much is going in or out and how this is affected by climate. Understanding this photosynthesis-climate feedback riddle is key to understanding how climate change may affect the natural processes that are a sink for human-made carbon emissions."

Previous laboratory research showed that carbonyl sulfide is taken up in step with photosynthesis. But unlike CO2, there is no emission of carbonyl sulfide from plants.

The researchers compared atmospheric measurements of carbonyl sulfide over North American during the growing season with two simulations of an atmospheric transport model. The airborne observations, from the Intercontinental Chemical Transport Experiment-North America, also measured CO2. They combined that data with results from laboratory experiments that looked at gas exchange at the leaf level.

"We've always looked at the total change in CO2, but now we can look for the influence of photosynthesis on this total change," remarked lead author Elliott Campbell a former Carnegie postdoctoral researcher, currently at UC Merced. "Our approach, based on the relation of carbonyl sulfide to photosynthesis, gives us this unique ability."

With the new inputs, the researchers ran their simulations, which consider plant uptake, soil and ocean absorption, human-made emissions and how the gases flow through these systems. The simulations showed that the magnitude of the plant uptake was much larger than other sources and sinks at a continental scale during the growing season, which is important for using the compound to trace photosynthesis.

"The intriguing outcome of this study is that an inverse analysis of the atmospheric carbonyl sulfide measurements may be used to quantify the carbon released during plant respiration," remarked Berry. "That key missing piece has been a thorn in the side of carbon-cycle research for years."

Joe Berry | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>