Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Coral Thrive In Acidified Seawater

29.01.2014
Some coral reefs in the Pacific Ocean can not only survive but thrive in waters that have high levels of acidification, according to a Texas A&M University researcher.

Oceanographer Katie Shamberger and colleagues from Woods Hole Oceanographic Institution and the Palau International Coral Reef Center (PICRC) examined coral reefs around the islands of Palau in the western Pacific Ocean. Her findings have been published in Geophysical Research Letters, a publication of the American Geophysical Union.


Texas A&M University

Texas A&M oceanographer Katie Shamberger (at left) and other researchers prepare to dive to coral beds near Palau

Shamberger measured the pH levels of seawater on several coral reefs in Palau and found that coral reefs in the Rock Islands of Palau have high levels of acidification that aren’t expected to occur in the open ocean in that region until the end of the century. Contrary to what might have been expected, these reefs appeared to be healthier than nearby reefs in less acidic waters.

“The processes that cause these high levels of acidification in the Rock Islands are completely natural,” Shamberger explains. “The growth of the reef and the breathing of carbon dioxide into the water by organisms on the reef acidifies the water.

“The Rock Islands are a maze of small islands, and the water there tends to ‘linger’ and stay around for a long time before being flushed out,” she notes.

“That allows these natural processes to change the water chemistry on the reef dramatically over time.”

Shamberger said studies show worldwide that the oceans are becoming more acidic. While ocean chemistry varies naturally at different locations, it is changing around the world due to increased levels of carbon dioxide in the atmosphere. The ocean absorbs atmospheric carbon dioxide, which reacts with seawater, lowering its overall pH, and making it more acidic.

“This process also removes carbonate ions needed by corals and other organisms to build their skeletons and shells,” she adds. “Corals growing in low pH conditions, both in laboratory experiments that simulate future conditions and in other naturally low pH ocean environments, show a range of negative impacts. Impacts can include juveniles having difficulty constructing their skeletons, fewer varieties of corals, less coral cover, more algae growth, and more porous corals with greater signs of erosion from other organisms.

“We don’t yet know how the coral communities in Palau’s Rock Islands are able to survive in such high levels of acidification. Is it biological, the perfect combination of environmental factors, or both? We don’t know, and finding out is one of the next steps we take.”

Shamberger found that corals living in the acidified waters were surprisingly diverse and healthy.

Previous work on naturally acidified coral reefs has shown these reefs to have lower coral diversity and sometimes lower coral cover than nearby less acidic reefs, she notes.

“In fact, the opposite seems to be true in Palau. The corals seem to be thriving and growing. This area in Palau seems to be the exception of healthy coral communities in acidified waters.

Shamberger points out that this does not mean that other coral reefs will be okay under ocean acidification. “Somehow, conditions were just right for the coral communities in the Rock Islands to survive high levels of acidification, but that does not mean that conditions will be just right for other coral reefs dealing with ocean acidification,” she explains. “Palau’s coral communities probably had thousands of years to develop while current ocean acidification is happening much more quickly. Even if there is the potential for coral reefs to adapt to ocean acidification, they might not have enough time to do so.”

Some coral reefs can be thousands of years old and live in waters 1,500 feet or more below the surface. Coral reefs play a key role in ocean processes and they are one of the most diverse ecosystems in the world, supporting numerous forms of marine life.

The project was funded by the National Science Foundation, the Woods Hole Oceanographic Institution and the Nature Conservancy.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu or Katie Shamberger at (979) 845-5752 or Katie.shamberger@tamu.edu

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | Newswise
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht The European pet trade is jeopardising the survival of rare reptile species
13.07.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>