Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Coral Thrive In Acidified Seawater

29.01.2014
Some coral reefs in the Pacific Ocean can not only survive but thrive in waters that have high levels of acidification, according to a Texas A&M University researcher.

Oceanographer Katie Shamberger and colleagues from Woods Hole Oceanographic Institution and the Palau International Coral Reef Center (PICRC) examined coral reefs around the islands of Palau in the western Pacific Ocean. Her findings have been published in Geophysical Research Letters, a publication of the American Geophysical Union.


Texas A&M University

Texas A&M oceanographer Katie Shamberger (at left) and other researchers prepare to dive to coral beds near Palau

Shamberger measured the pH levels of seawater on several coral reefs in Palau and found that coral reefs in the Rock Islands of Palau have high levels of acidification that aren’t expected to occur in the open ocean in that region until the end of the century. Contrary to what might have been expected, these reefs appeared to be healthier than nearby reefs in less acidic waters.

“The processes that cause these high levels of acidification in the Rock Islands are completely natural,” Shamberger explains. “The growth of the reef and the breathing of carbon dioxide into the water by organisms on the reef acidifies the water.

“The Rock Islands are a maze of small islands, and the water there tends to ‘linger’ and stay around for a long time before being flushed out,” she notes.

“That allows these natural processes to change the water chemistry on the reef dramatically over time.”

Shamberger said studies show worldwide that the oceans are becoming more acidic. While ocean chemistry varies naturally at different locations, it is changing around the world due to increased levels of carbon dioxide in the atmosphere. The ocean absorbs atmospheric carbon dioxide, which reacts with seawater, lowering its overall pH, and making it more acidic.

“This process also removes carbonate ions needed by corals and other organisms to build their skeletons and shells,” she adds. “Corals growing in low pH conditions, both in laboratory experiments that simulate future conditions and in other naturally low pH ocean environments, show a range of negative impacts. Impacts can include juveniles having difficulty constructing their skeletons, fewer varieties of corals, less coral cover, more algae growth, and more porous corals with greater signs of erosion from other organisms.

“We don’t yet know how the coral communities in Palau’s Rock Islands are able to survive in such high levels of acidification. Is it biological, the perfect combination of environmental factors, or both? We don’t know, and finding out is one of the next steps we take.”

Shamberger found that corals living in the acidified waters were surprisingly diverse and healthy.

Previous work on naturally acidified coral reefs has shown these reefs to have lower coral diversity and sometimes lower coral cover than nearby less acidic reefs, she notes.

“In fact, the opposite seems to be true in Palau. The corals seem to be thriving and growing. This area in Palau seems to be the exception of healthy coral communities in acidified waters.

Shamberger points out that this does not mean that other coral reefs will be okay under ocean acidification. “Somehow, conditions were just right for the coral communities in the Rock Islands to survive high levels of acidification, but that does not mean that conditions will be just right for other coral reefs dealing with ocean acidification,” she explains. “Palau’s coral communities probably had thousands of years to develop while current ocean acidification is happening much more quickly. Even if there is the potential for coral reefs to adapt to ocean acidification, they might not have enough time to do so.”

Some coral reefs can be thousands of years old and live in waters 1,500 feet or more below the surface. Coral reefs play a key role in ocean processes and they are one of the most diverse ecosystems in the world, supporting numerous forms of marine life.

The project was funded by the National Science Foundation, the Woods Hole Oceanographic Institution and the Nature Conservancy.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu or Katie Shamberger at (979) 845-5752 or Katie.shamberger@tamu.edu

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | Newswise
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Europeans have unknowingly contributed to the spread of invasive plant species in North America
01.07.2015 | Helmholtz-Zentrum für Umweltforschung - UFZ

nachricht Darwin's finches have reached their limits on the Galápagos
23.06.2015 | University of Groningen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>