Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Coral Thrive In Acidified Seawater

29.01.2014
Some coral reefs in the Pacific Ocean can not only survive but thrive in waters that have high levels of acidification, according to a Texas A&M University researcher.

Oceanographer Katie Shamberger and colleagues from Woods Hole Oceanographic Institution and the Palau International Coral Reef Center (PICRC) examined coral reefs around the islands of Palau in the western Pacific Ocean. Her findings have been published in Geophysical Research Letters, a publication of the American Geophysical Union.


Texas A&M University

Texas A&M oceanographer Katie Shamberger (at left) and other researchers prepare to dive to coral beds near Palau

Shamberger measured the pH levels of seawater on several coral reefs in Palau and found that coral reefs in the Rock Islands of Palau have high levels of acidification that aren’t expected to occur in the open ocean in that region until the end of the century. Contrary to what might have been expected, these reefs appeared to be healthier than nearby reefs in less acidic waters.

“The processes that cause these high levels of acidification in the Rock Islands are completely natural,” Shamberger explains. “The growth of the reef and the breathing of carbon dioxide into the water by organisms on the reef acidifies the water.

“The Rock Islands are a maze of small islands, and the water there tends to ‘linger’ and stay around for a long time before being flushed out,” she notes.

“That allows these natural processes to change the water chemistry on the reef dramatically over time.”

Shamberger said studies show worldwide that the oceans are becoming more acidic. While ocean chemistry varies naturally at different locations, it is changing around the world due to increased levels of carbon dioxide in the atmosphere. The ocean absorbs atmospheric carbon dioxide, which reacts with seawater, lowering its overall pH, and making it more acidic.

“This process also removes carbonate ions needed by corals and other organisms to build their skeletons and shells,” she adds. “Corals growing in low pH conditions, both in laboratory experiments that simulate future conditions and in other naturally low pH ocean environments, show a range of negative impacts. Impacts can include juveniles having difficulty constructing their skeletons, fewer varieties of corals, less coral cover, more algae growth, and more porous corals with greater signs of erosion from other organisms.

“We don’t yet know how the coral communities in Palau’s Rock Islands are able to survive in such high levels of acidification. Is it biological, the perfect combination of environmental factors, or both? We don’t know, and finding out is one of the next steps we take.”

Shamberger found that corals living in the acidified waters were surprisingly diverse and healthy.

Previous work on naturally acidified coral reefs has shown these reefs to have lower coral diversity and sometimes lower coral cover than nearby less acidic reefs, she notes.

“In fact, the opposite seems to be true in Palau. The corals seem to be thriving and growing. This area in Palau seems to be the exception of healthy coral communities in acidified waters.

Shamberger points out that this does not mean that other coral reefs will be okay under ocean acidification. “Somehow, conditions were just right for the coral communities in the Rock Islands to survive high levels of acidification, but that does not mean that conditions will be just right for other coral reefs dealing with ocean acidification,” she explains. “Palau’s coral communities probably had thousands of years to develop while current ocean acidification is happening much more quickly. Even if there is the potential for coral reefs to adapt to ocean acidification, they might not have enough time to do so.”

Some coral reefs can be thousands of years old and live in waters 1,500 feet or more below the surface. Coral reefs play a key role in ocean processes and they are one of the most diverse ecosystems in the world, supporting numerous forms of marine life.

The project was funded by the National Science Foundation, the Woods Hole Oceanographic Institution and the Nature Conservancy.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu or Katie Shamberger at (979) 845-5752 or Katie.shamberger@tamu.edu

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | Newswise
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>