Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some Coral Thrive In Acidified Seawater

29.01.2014
Some coral reefs in the Pacific Ocean can not only survive but thrive in waters that have high levels of acidification, according to a Texas A&M University researcher.

Oceanographer Katie Shamberger and colleagues from Woods Hole Oceanographic Institution and the Palau International Coral Reef Center (PICRC) examined coral reefs around the islands of Palau in the western Pacific Ocean. Her findings have been published in Geophysical Research Letters, a publication of the American Geophysical Union.


Texas A&M University

Texas A&M oceanographer Katie Shamberger (at left) and other researchers prepare to dive to coral beds near Palau

Shamberger measured the pH levels of seawater on several coral reefs in Palau and found that coral reefs in the Rock Islands of Palau have high levels of acidification that aren’t expected to occur in the open ocean in that region until the end of the century. Contrary to what might have been expected, these reefs appeared to be healthier than nearby reefs in less acidic waters.

“The processes that cause these high levels of acidification in the Rock Islands are completely natural,” Shamberger explains. “The growth of the reef and the breathing of carbon dioxide into the water by organisms on the reef acidifies the water.

“The Rock Islands are a maze of small islands, and the water there tends to ‘linger’ and stay around for a long time before being flushed out,” she notes.

“That allows these natural processes to change the water chemistry on the reef dramatically over time.”

Shamberger said studies show worldwide that the oceans are becoming more acidic. While ocean chemistry varies naturally at different locations, it is changing around the world due to increased levels of carbon dioxide in the atmosphere. The ocean absorbs atmospheric carbon dioxide, which reacts with seawater, lowering its overall pH, and making it more acidic.

“This process also removes carbonate ions needed by corals and other organisms to build their skeletons and shells,” she adds. “Corals growing in low pH conditions, both in laboratory experiments that simulate future conditions and in other naturally low pH ocean environments, show a range of negative impacts. Impacts can include juveniles having difficulty constructing their skeletons, fewer varieties of corals, less coral cover, more algae growth, and more porous corals with greater signs of erosion from other organisms.

“We don’t yet know how the coral communities in Palau’s Rock Islands are able to survive in such high levels of acidification. Is it biological, the perfect combination of environmental factors, or both? We don’t know, and finding out is one of the next steps we take.”

Shamberger found that corals living in the acidified waters were surprisingly diverse and healthy.

Previous work on naturally acidified coral reefs has shown these reefs to have lower coral diversity and sometimes lower coral cover than nearby less acidic reefs, she notes.

“In fact, the opposite seems to be true in Palau. The corals seem to be thriving and growing. This area in Palau seems to be the exception of healthy coral communities in acidified waters.

Shamberger points out that this does not mean that other coral reefs will be okay under ocean acidification. “Somehow, conditions were just right for the coral communities in the Rock Islands to survive high levels of acidification, but that does not mean that conditions will be just right for other coral reefs dealing with ocean acidification,” she explains. “Palau’s coral communities probably had thousands of years to develop while current ocean acidification is happening much more quickly. Even if there is the potential for coral reefs to adapt to ocean acidification, they might not have enough time to do so.”

Some coral reefs can be thousands of years old and live in waters 1,500 feet or more below the surface. Coral reefs play a key role in ocean processes and they are one of the most diverse ecosystems in the world, supporting numerous forms of marine life.

The project was funded by the National Science Foundation, the Woods Hole Oceanographic Institution and the Nature Conservancy.

Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu or Katie Shamberger at (979) 845-5752 or Katie.shamberger@tamu.edu

For more news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at https://twitter.com/TAMU

Keith Randall | Newswise
Further information:
http://www.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Traffic emissions may pollute 1 in 3 Canadian homes
22.04.2015 | University of Toronto Faculty of Applied Science & Engineering

nachricht Engineers purify sea and wastewater in 2.5 minutes
17.04.2015 | Investigación y Desarrollo

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

Highly Conductive Germanium Nanowires Made by a Simple, One-Step Process

27.04.2015 | Materials Sciences

Cell fusion ‘eats up’ the ‘attractive cell’ in flowering plants

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>