Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Reef Fishes Prove Invaluable in the Study of Evolutionary Ecology

22.05.2013
Study of habitat-specialist coral reef species yields new insights about animal social systems

After reviewing recent research based on the study of habitat-specialist coral reef fishes, Boston University post-doctoral researcher Marian Y. L. Wong and Peter M. Buston, assistant professor of biology, have found that these species have proven invaluable for experimental testing of key concepts in social evolution, noting that studies of these fishes already have yielded insights about the ultimate reasons for female reproductive suppression, group living, and bidirectional sex change.

Based on this impressive track record, the researchers maintain that these fishes should be the focus of future tests of key concepts in evolutionary ecology. Their findings are published in an article titled “Social Systems in Habitat-Specialist Reef Fishes: Key Concepts in Evolutionary Ecology” in the June 2013 issue of the journal BioScience (BioScience 63: 453–463. ISSN 0006-3568, electronic ISSN 1525-3244; www.ucpressjournals.com/reprintinfo.asp. doi:10.1525/bio.2013.63.6.7)

A major focus in evolutionary ecology lies in explaining the evolution and maintenance of social systems. Although most theoretical formulations of social system evolution were initially inspired by studies of birds, mammals, and insects, incorporating a wider taxonomic perspective is important for testing deeply entrenched theory. In their new study, the researchers suggest that habitat-specialist coral reef fishes provide that wider perspective.

“While such coral reef fishes are ecologically similar, they display remarkable variation in mating systems, social organization, and sex allocation strategies,” says Wong. “Our review of recent research clearly shows the amenability of these fishes for experimental testing of key concepts in social evolution.”

The new study highlights recent contributions made by one specific group of coral reef fishes—habitat-specialist reef fishes—to testing the robustness of mating system, cooperative breeding, and sex allocation theories. Habitat-specialist reef fishes are small bodied and well adapted to living within discrete patches of coral, anemones, and sponges. They include such species as the Pomacentridae (damselfish), Gobiidae (goby), Caracanthidae (coral croucher), and Cirrhitidae (hawkfish) families.

Being habitat specialists, these fishes are highly site attached and have limited mobility. They rely on their particular habitat for food, shelter, and breeding sites, and they experience high risks of mortality from predation if they venture outside their immediate habitat. Mating systems are highly variable both among and within these species, including monogamy (one male mates with one female), harem polygyny (one male mates with several females), and polygynandry (multiple males and females mate with each other). These fishes also exhibit great variability in social organization, including pair and group formation, with group members’ being reproductive or non-reproductive depending on the mating system. “This behavioral variability, despite the relative ecological similarity of these species, presents a unique opportunity to test the various hypotheses for the evolution of different social systems,” says Buston.

According to the authors, habitat-specialist reef fishes are a tried and tested group of model organisms for advancing the understanding of the evolution and ecology of social systems in animals; the study of these species already has revealed many things about the evolutionary ecology of mating, social, and sexual systems. Despite their ecological quirkiness, they have been instrumental for testing the generality and robustness of key concepts that are widely applicable to other taxonomic groups. In fact, in some cases, they have been the only species in which experimental tests of key hypotheses have been performed, largely because of the ease with which their habitat and social organization can be manipulated in the lab and in the field. For these reasons, the authors argue that these species should be the focus of future tests of key concepts in evolutionary ecology.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research. In 2012, BU joined the Association of American Universities (AAU), a consortium of 62 leading research universities in the United States and Canada.

Marian Wong | Newswise
Further information:
http://www.uow.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>