Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coral Reef Fishes Prove Invaluable in the Study of Evolutionary Ecology

22.05.2013
Study of habitat-specialist coral reef species yields new insights about animal social systems

After reviewing recent research based on the study of habitat-specialist coral reef fishes, Boston University post-doctoral researcher Marian Y. L. Wong and Peter M. Buston, assistant professor of biology, have found that these species have proven invaluable for experimental testing of key concepts in social evolution, noting that studies of these fishes already have yielded insights about the ultimate reasons for female reproductive suppression, group living, and bidirectional sex change.

Based on this impressive track record, the researchers maintain that these fishes should be the focus of future tests of key concepts in evolutionary ecology. Their findings are published in an article titled “Social Systems in Habitat-Specialist Reef Fishes: Key Concepts in Evolutionary Ecology” in the June 2013 issue of the journal BioScience (BioScience 63: 453–463. ISSN 0006-3568, electronic ISSN 1525-3244; www.ucpressjournals.com/reprintinfo.asp. doi:10.1525/bio.2013.63.6.7)

A major focus in evolutionary ecology lies in explaining the evolution and maintenance of social systems. Although most theoretical formulations of social system evolution were initially inspired by studies of birds, mammals, and insects, incorporating a wider taxonomic perspective is important for testing deeply entrenched theory. In their new study, the researchers suggest that habitat-specialist coral reef fishes provide that wider perspective.

“While such coral reef fishes are ecologically similar, they display remarkable variation in mating systems, social organization, and sex allocation strategies,” says Wong. “Our review of recent research clearly shows the amenability of these fishes for experimental testing of key concepts in social evolution.”

The new study highlights recent contributions made by one specific group of coral reef fishes—habitat-specialist reef fishes—to testing the robustness of mating system, cooperative breeding, and sex allocation theories. Habitat-specialist reef fishes are small bodied and well adapted to living within discrete patches of coral, anemones, and sponges. They include such species as the Pomacentridae (damselfish), Gobiidae (goby), Caracanthidae (coral croucher), and Cirrhitidae (hawkfish) families.

Being habitat specialists, these fishes are highly site attached and have limited mobility. They rely on their particular habitat for food, shelter, and breeding sites, and they experience high risks of mortality from predation if they venture outside their immediate habitat. Mating systems are highly variable both among and within these species, including monogamy (one male mates with one female), harem polygyny (one male mates with several females), and polygynandry (multiple males and females mate with each other). These fishes also exhibit great variability in social organization, including pair and group formation, with group members’ being reproductive or non-reproductive depending on the mating system. “This behavioral variability, despite the relative ecological similarity of these species, presents a unique opportunity to test the various hypotheses for the evolution of different social systems,” says Buston.

According to the authors, habitat-specialist reef fishes are a tried and tested group of model organisms for advancing the understanding of the evolution and ecology of social systems in animals; the study of these species already has revealed many things about the evolutionary ecology of mating, social, and sexual systems. Despite their ecological quirkiness, they have been instrumental for testing the generality and robustness of key concepts that are widely applicable to other taxonomic groups. In fact, in some cases, they have been the only species in which experimental tests of key hypotheses have been performed, largely because of the ease with which their habitat and social organization can be manipulated in the lab and in the field. For these reasons, the authors argue that these species should be the focus of future tests of key concepts in evolutionary ecology.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research. In 2012, BU joined the Association of American Universities (AAU), a consortium of 62 leading research universities in the United States and Canada.

Marian Wong | Newswise
Further information:
http://www.uow.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>