Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooled coal emissions would clean air and lower health and climate-change costs

28.08.2012
Refrigerating coal-plant emissions would reduce levels of dangerous chemicals that pour into the air -- including carbon dioxide by more than 90 percent -- at a cost of 25 percent efficiency, according to a simple math-driven formula designed by a team of University of Oregon physicists.

The computations for such a system, prepared on an electronic spreadsheet, appeared in Physical Review E, a journal of the American Physical Society.

In a separate, unpublished and preliminary economic analysis, the scientists argue that the "energy penalty" would raise electricity costs by about a quarter but also reap huge societal benefits through subsequent reductions of health-care and climate-change costs associated with burning coal. An energy penalty is the reduction of electricity available for sale to consumers if plants used the same amounts of coal to maintain electrical output while using a cryogenic cleanup.

"The cryogenic treatment of flue gasses from pulverized coal plant is possible, and I think affordable, especially with respect to the total societal costs of burning coal," said UO physicist Russell J. Donnelly, whose research team was funded by the U.S. Department of Energy for the work detailed in the published journal article.

"In the U.S., we have about 1,400 electric-generating unit powered by coal, operated at about 600 power plants," Donnelly said. That energy, he added, is sold at about 5.6 cents per kilowatt-hour, according to a 2006 Congressional Budget Office estimate. "The estimated health costs of burning coal in the U.S. are in the range of $150 billion to $380 billion, including 18,000-46,000 premature deaths, 540,000 asthma attacks, 13,000 emergency room visits and two million missed work or school days each year."

In their separate economic analysis, Donnelly and UO research assistant Robert E. Hershberger, also a co-author on the journal paper, estimate that implementing large-scale cryogenic systems into coal-fired plants would reduce overall costs to society by 38 percent through the sharp reduction of associated health-care and climate-change costs. Not in the equation, Donnelly said, are the front-end health-care costs involved in coal extraction through mining.

The cryogenic concept is not new. Donnelly experimented briefly in the 1960s with a paper mill in Springfield, Ore., to successfully remove odor-causing gasses filling the area around the plant using cryogenics. Subsequently the National Science Foundation funded a major study to capture sulfur dioxide emissions -- a contributor to acid rain -- from coal burning plants. The grant included a detailed engineering study by the Bechtel Corp. of San Francisco.

The Bechtel study showed that the cryogenic process would work very well, but noted that large quantities of carbon dioxide also would be condensed, a consequence that raised no concerns in 1978. "Today we recognize that carbon dioxide emissions are a leading contributor to climate-warming factors attributed to humans," Donnelly said.

Out came his previously published work on this concept, followed by a rigorous two-year project to recheck and update his thermodynamic calculations and compose "a spreadsheet-accessible" formula for potential use by industry. His earlier work on the cryogenic treatment of coal-plant emissions and natural gas sources had sparked widespread interest internationally.

While the required cooling machinery would be large -- potentially the size of a football stadium -- the cost for construction or retrofitting likely would not be dramatically larger than present systems that include scrubbers, which would no longer be necessary, Donnelly said. The new journal article does not address construction costs or the disposal of the captured pollutants, the latter of which would be dependent on engineering and perhaps geological considerations.

According to the Physical Review E paper, carbon dioxide would be captured in its solid phase, then warmed and compressed into a gas that could be moved by pipeline at near ambient temperatures to dedicated storage facilities that could be hundreds of miles away. Other chemicals such as sulfur dioxide, some nitrogen oxides and mercury also would be condensed and safely removed from the exhaust stream of the plants.

Last December the U.S. Environmental Protection Agency issued new mercury and air toxic standards (MATS), calling for the trapping of 41 percent of sulfur dioxide and 90 percent of mercury emissions. A cryogenic system would do better based on the conservatively produced computations by Donnelly's team -- capturing at least 98 percent of sulfur dioxide, virtually 100 percent of mercury and, in addition, 90 percent of carbon dioxide.

"This forward-thinking formula and the preliminary analysis by these researchers offer some exciting possibilities for the electric power industry that could ultimately benefit human health and the environment," said Kimberly Andrews Espy, UO vice president for research and innovation. "Scientists at the University of Oregon are continuing to develop new ideas and advanced materials to foster a sustainable future for our planet and its people."

Co-authors with Donnelly and Hershberger on the journal article were: Charles E. Swanson, who earned his doctorate in physics from the UO and served as postdoctoral researcher under Donnelly; John W. Elzey, a former research associate in Donnelly's Cryogenic Helium Turbulence Lab and now a scientist at GoNano Technologies in Moscow, Idaho; and John Pfotenhauer, who earned his doctorate at the UO and now is in the mechanical engineering department at the University of Wisconsin, Madison.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Source: Russell J. Donnelly, professor of physics, 541-346-4226, rjd@uoregon.edu

Links:

Donnelly faculty page: http://physics.uoregon.edu/faculty/donnelly.html

UO physics: http://physics.uoregon.edu/index.html

Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

Note: The University of Oregon is equipped with an on-campus television studio with satellite uplink capacity, and a radio studio with an ISDN phone line for broadcast-quality radio interviews. Call the Media Contact above to begin the process.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>