Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The contribution of particulate matter to forest decline

19.06.2013
Air pollution is related to forest decline and also appears to attack the protecting wax on tree leaves and needles.

Bonn University scientists have now discovered a responsible mechanism: particulate matter salt compounds that become deliquescent because of humidity and form a wick-like structure that removes water from leaves and promotes dehydration. These results are published in “Environmental Pollution”.

Nature conservationists call it “lingering illness”, and the latest report on the North-Rhine Westphalian forest conditions confirms ongoing damage. Bonn University scientists have now shown that salt deposits on leaves may decrease the drought tolerance of trees, thereby contributing to forest decline. “Our study reveals that so-called wax degradation on pine needles may develop from deposited particulate matter”, says Dr. Jürgen Burkhardt from the Institute of Crop Science and Resource Conservation. Wax helps to protect leaves and needles from water loss.

It has long been known that air pollutants accelerate wax ageing and that “wax degradation” is closely related to forest damage. “Wax degradation was addressed by many studies in the 1980s and 90s, but sound explanations for both the degradation mechanism and the high correlation with forest damage have yet been missing”, Dr. Burkhardt reports. Previous approaches assumed chemical reactions for wax degradation, whereas the present study reveals physical reasons. “The deposition of hygroscopic salts is capable of decreasing the drought tolerance of trees”, co-author Shyam Pariyar says.
Accelerated dehydration of needles treated with salt solutions

The scientists sprayed salt solutions on Scots pine needles and recorded their weight loss after abscission. The needles treated with salt solutions dried out significantly faster than the untreated control needles. Using an electron microscope, the scientists observed the salts becoming deliquescent and moving into the stomata of the needles. Stomata are tiny pores used by plants to take up carbon dioxide for photosynthesis and release water vapor and oxygen. The deliquescent salts form very thin liquid connections between the surface and interior of the needle, and water is removed from the needles by these wick-like structures. Because the plants are unable to counteract this removal of water, the plants dehydrate more rapidly. Therefore, polluted air containing large amounts of particulate matter may directly reduce the drought tolerance of trees. Simultaneously, the deliquescent salts make wax appear “degraded”. “This newly described mechanism was not considered in earlier explanations of Central European forest decline”, states Dr. Burkhardt.

Conceivable aggravation of forest decline by climate change

A new type of electron microscope enabled the observation of particle deliquescence and dynamics under changing air humidity. In addition, a long-lasting scientific paradigm had excluded any aqueous movement into the stomata, and only recently had Bonn University scientists confirmed its existence (http://www3.uni-bonn.de/Pressemitteilungen/227-2012).

Recently, regional forest damage has been reported in the western USA and other parts of the world. A relationship with increasing climate change-type drought has been proposed, but the newly discovered mechanism involving particulate matter might contribute to the regional forest damage. “Particularly because air concentrations of hygroscopic particles have largely increased within the last decades”, says Dr. Burkhardt.

The study was funded by the Deutsche Forschungsgemeinschaft and the European Union (project ÉCLAIRE).

Publication: Particulate pollutants are capable to `degrade´ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.), “Environmental Pollution”, DOI: 10.1016/j.envpol.2013.04.041
Contact:

Dr. Jürgen Burkhardt
University of Bonn
Institute of Crop Science and Resource Conservation
Plant Nutrition Group
Phone. +49 228 732186
E-Mail: j.burkhardt@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>