Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Constructed wetlands save frogs and birds threatened with extinction

21.01.2014
Over the last few decades, several thousands of wetlands have been constructed in Sweden in agricultural landscapes.

The primary reason is that the wetlands prevent a surfeit of nutrients from reaching our oceans and lakes. A study from Halmstad University shows, in addition, that wetlands have contributed to saving several frog and bird species from the “Red List”–a list that shows which species are at risk of dying out in Sweden.

In the latest update, five of the nine red-listed bird species that breed in wetlands–including the little grebe and the little ringed plover–could be taken off the list. Yet another bird species was moved to a lower threat category. As regards batrachians, four species–among them the European tree frog–have been taken off the list, and two species have been moved to a lower threat category.

Great effect on biological diversity
“An important objective in constructing wetlands is reducing eutrophication – over-fertilisation. It’s surprisingly positive that they’ve also had such a great direct effect on biological diversity,” says Stefan Weisner, Professor of Biology specialising in environmental science at Halmstad University.

During the 19th and 20th centuries, the amount of wetlands in Sweden decreased drastically: almost all original wetlands in agricultural areas have disappeared through drainage and land reclamation. This has affected many of the plants and animals that depend on these types of environments.

An inexpensive way to reduce eutrophication
Over the last 15 years, nearly 3,000 wetland areas have been constructed in agricultural landscapes around Sweden. Farmers have the possibility of receiving economic support for this from sources such as the Swedish Board of Agriculture. The primary reason is because wetlands catch the surfeit of nutrients from agriculture such as nitrogen and phosphorus–substances that would otherwise have leaked out into the seas and lakes and contributed to eutrophication.

The study shows that creation of wetlands is a cost-effective to catch the nutrients.

“It’s a very effective way of purifying the water. It’s less expensive than constructing treatment plants, and in addition it contributes to biological diversity,” Prof Weisner says.

The research study, which is a compilation of previous studies in the field, was written by Stefan Weisner of Halmstad University and John Strand of the Agricultural Society of Halland, and has been published in Ecological Engineering.

For more information, contact Stefan Weisner, Professor of Biology specialising in environmental science at Halmstad University, tel. 035-16 73 48, e-mail: stefan.weisner@hh.se.

Pressofficer Lena Lundén, +46-73 241 74 43, lena.lunden@hh.se

"Effects of wetland construction on nitrogen transport and species richness in the agricultural landscape – experiences from Sweden"
John. A. Strand & Stefan E.B. Weisner
http://dx.doi.org/10.1016/j.ecoleng.2012.12.087
Weitere Informationen:
http://www.deepdyve.com/lp/elsevier/effects-of-wetland-construction-on-nitrogen-transport-and-species-9la77zy8mg?articleList=%2Fsearch%3Fquery%3DWeisner

link to Report

http://www.hh.se/4.70cf2e49129168da015800010489.html
Wetland Research Centre Halmstad University

Lena Lundén | idw
Further information:
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>