Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Conservation scientists look beyond greenbelts to connect wildlife sanctuaries

Landscape corridors and connectivity in conservation and restoration planning

We live in a human-dominated world. For many of our fellow creatures, this means a fragmented world, as human conduits to friends, family, and resources sever corridors that link the natural world. Our expanding web of highways, cities, and intensive agriculture traps many animals and plants in islands and cul-de-sacs of habitat, held back by barriers of geography or architecture from reaching mates, food, and wider resources.

A team of researchers, managers, and ecological risk assessors review the current state-of-the-art in landscape connectivity planning, offering models, case studies, and advice for coping with the uncertainty inherent in dynamic, real-world conditions in the Ecological Society of America's 16th volume of Issues in Ecology.

Connectivity doesn't always mean corridors

"The shortest path is not always the best path," said author Sadie Ryan, an ecologist at the State University of New York in Syracuse. "Connectivity is not always just a straight line of greenway that you can identify from an airplane." Connections can be conduits, or more complex extensions of habitat, looking more like a web than a greenbelt. Coastal inhabitants need the depth of the reach of tides as well as the horizontal reach of coastline habitat. Birds may be able to hop from preserve to pea-patch to backyard oasis, depending on their range and flexibility.

The need to move is most obvious for migratory animals and the large animals that need big tracts of territory. Most of us are aware of large and charismatic animals like deer, bear, or coyotes. But plants, and smaller, less itinerant animals, also benefit from connections to wider spaces.

"Landscape connectivity is as diverse as the animals that live in it," said lead author Deborah Rudnick, an environmental scientist with Integral Consulting Inc, in Seattle, WA.

On the ground, managers need to address the biology of their focal species, understanding behavior, genetics, adaptation, and habitat. They have to scale up observational and experimental data to predict interactions with other wildlife and physical features of the landscape, layering on the possibility of climate changing, waterways shifting, and human life encroaching. "It's a massive amount of info to keep in your head simultaneously. I want people to step away from this review with a sense of that complexity," said Rudnick.

No perfect solutions

Opening corridors can sometimes aid the flow of invasive species and disease, as well as the species at the heart of conservation planning. All management plans involve trade-offs—whether that means obtaining the best versus the most available land, or favoring a single endangered species at the possible expense of others in its ecological community.

Some planners prefer to focus on preserving ecosystem services, rather than specific species, in an effort to preserve an ecological community more holistically. But there is no perfect solution. Unpredictable future conditions are unavoidable complications to conservation efforts, and climate change in particular could throw a ringer into the best laid plans.

"We are no longer living in a world where we can preserve perfect habitat," said Ryan.

Climate change means wildlife will move—unpredictably

Climate change, and wildlife's response to climate change, is not a linear process. We can't expect all species simply to move to colder climes, nor expect ecological communities to move as complete units, said Ryan and Rudnick. Species have independent capacities to adapt and move, decoupled from the ecological relationships of predator to prey, pollinator to flower, or grazer to grass.

"We're seeing species moving to new territory independently, remixing existing communities and shaking conservation definitions," said Rudnick. "What do we mean by quote-un-quote conserving a community? What does it mean in the face of climate change? You cannot expect a community to stay in the place that it was in the face of major changes in their environmental conditions."

Our models, and management, must adapt to conditions changing in real time. Flexibility is not generally a virtue of government regulations. The timescale of legal decision-making is generally much shorter than we would want in order to provide communities, both ecological and anthropological, time to adjust.

Achieving connections for wildlife requires forging connections with people

Corridors and connections are often in the spaces between preserves, the mixed use spaces occupied by human communities. Bridging barriers for wildlife means bridging the needs of the people living in that landscape. It means working with communities to find solutions that are practical, and possible, said the authors, not just from the perspective of science, but also residents, farmers, and industry. A first step is finding a common language. Ryan said she doesn't talk about 'ecosystem services' in rural Uganda. Those aren't Rutooro words. "We ask, "Is the park beneficial to you?"" and locals might say, "It keeps the rain." They perceive benefit from the park, but don't describe it like a scientist. The same is true of English-speaking communities.
You build your models, said Rudnick. "Then you try to put them in the real world. Community needs—that is, human community needs—add a whole layer of complexity to real life implementation."


Deborah A Rudnick, Sadie J Ryan, Paul Beier, Samuel A Cushman, Fred Dieffenbach, Clinton W Epps, Leah R Gerber, Joel Hartter, Jeff S Jenness, Julia Kintsch, Adina M Merenlender, Ryan M Perkl, Damian V Preziosi, and Stephen C. Trombulak.

"The role of landscape connectivity in planning and implementing conservation and restoration priorities." Issues in Ecology 16, Fall 2012.

Author contacts
Deborah Rudnick
Integral Consulting Inc., Seattle, WA.
(206) 957-0345
Sadie Ryan
State University of New York Environmental and Forestry Biology, Syracuse, NY.
(315) 470-6757
Outside contact on landscape connectivity
Nick Haddad
North Carolina State University, Raleigh, NC.
(919) 515-4588

Liza Lester | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>