Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conservation scientists look beyond greenbelts to connect wildlife sanctuaries

19.10.2012
Landscape corridors and connectivity in conservation and restoration planning

We live in a human-dominated world. For many of our fellow creatures, this means a fragmented world, as human conduits to friends, family, and resources sever corridors that link the natural world. Our expanding web of highways, cities, and intensive agriculture traps many animals and plants in islands and cul-de-sacs of habitat, held back by barriers of geography or architecture from reaching mates, food, and wider resources.

A team of researchers, managers, and ecological risk assessors review the current state-of-the-art in landscape connectivity planning, offering models, case studies, and advice for coping with the uncertainty inherent in dynamic, real-world conditions in the Ecological Society of America's 16th volume of Issues in Ecology.

Connectivity doesn't always mean corridors

"The shortest path is not always the best path," said author Sadie Ryan, an ecologist at the State University of New York in Syracuse. "Connectivity is not always just a straight line of greenway that you can identify from an airplane." Connections can be conduits, or more complex extensions of habitat, looking more like a web than a greenbelt. Coastal inhabitants need the depth of the reach of tides as well as the horizontal reach of coastline habitat. Birds may be able to hop from preserve to pea-patch to backyard oasis, depending on their range and flexibility.

The need to move is most obvious for migratory animals and the large animals that need big tracts of territory. Most of us are aware of large and charismatic animals like deer, bear, or coyotes. But plants, and smaller, less itinerant animals, also benefit from connections to wider spaces.

"Landscape connectivity is as diverse as the animals that live in it," said lead author Deborah Rudnick, an environmental scientist with Integral Consulting Inc, in Seattle, WA.

On the ground, managers need to address the biology of their focal species, understanding behavior, genetics, adaptation, and habitat. They have to scale up observational and experimental data to predict interactions with other wildlife and physical features of the landscape, layering on the possibility of climate changing, waterways shifting, and human life encroaching. "It's a massive amount of info to keep in your head simultaneously. I want people to step away from this review with a sense of that complexity," said Rudnick.

No perfect solutions

Opening corridors can sometimes aid the flow of invasive species and disease, as well as the species at the heart of conservation planning. All management plans involve trade-offs—whether that means obtaining the best versus the most available land, or favoring a single endangered species at the possible expense of others in its ecological community.

Some planners prefer to focus on preserving ecosystem services, rather than specific species, in an effort to preserve an ecological community more holistically. But there is no perfect solution. Unpredictable future conditions are unavoidable complications to conservation efforts, and climate change in particular could throw a ringer into the best laid plans.

"We are no longer living in a world where we can preserve perfect habitat," said Ryan.

Climate change means wildlife will move—unpredictably

Climate change, and wildlife's response to climate change, is not a linear process. We can't expect all species simply to move to colder climes, nor expect ecological communities to move as complete units, said Ryan and Rudnick. Species have independent capacities to adapt and move, decoupled from the ecological relationships of predator to prey, pollinator to flower, or grazer to grass.

"We're seeing species moving to new territory independently, remixing existing communities and shaking conservation definitions," said Rudnick. "What do we mean by quote-un-quote conserving a community? What does it mean in the face of climate change? You cannot expect a community to stay in the place that it was in the face of major changes in their environmental conditions."

Our models, and management, must adapt to conditions changing in real time. Flexibility is not generally a virtue of government regulations. The timescale of legal decision-making is generally much shorter than we would want in order to provide communities, both ecological and anthropological, time to adjust.

Achieving connections for wildlife requires forging connections with people

Corridors and connections are often in the spaces between preserves, the mixed use spaces occupied by human communities. Bridging barriers for wildlife means bridging the needs of the people living in that landscape. It means working with communities to find solutions that are practical, and possible, said the authors, not just from the perspective of science, but also residents, farmers, and industry. A first step is finding a common language. Ryan said she doesn't talk about 'ecosystem services' in rural Uganda. Those aren't Rutooro words. "We ask, "Is the park beneficial to you?"" and locals might say, "It keeps the rain." They perceive benefit from the park, but don't describe it like a scientist. The same is true of English-speaking communities.
You build your models, said Rudnick. "Then you try to put them in the real world. Community needs—that is, human community needs—add a whole layer of complexity to real life implementation."

Title

Deborah A Rudnick, Sadie J Ryan, Paul Beier, Samuel A Cushman, Fred Dieffenbach, Clinton W Epps, Leah R Gerber, Joel Hartter, Jeff S Jenness, Julia Kintsch, Adina M Merenlender, Ryan M Perkl, Damian V Preziosi, and Stephen C. Trombulak.

"The role of landscape connectivity in planning and implementing conservation and restoration priorities." Issues in Ecology 16, Fall 2012.

Author contacts
Deborah Rudnick
Integral Consulting Inc., Seattle, WA.
drudnick@integral-corp.com
(206) 957-0345
Sadie Ryan
State University of New York Environmental and Forestry Biology, Syracuse, NY.
sjryan@esf.edu
(315) 470-6757
Outside contact on landscape connectivity
Nick Haddad
North Carolina State University, Raleigh, NC.
(919) 515-4588
Nick_haddad@ncsu.edu

Liza Lester | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>