Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conservation scientists asking wrong questions on climate change impacts on wildlife

31.07.2014

Wildlife Conservation Society, University of Queensland, and others urge more focus on more imminent threats

Scientists studying the potential effects of climate change on the world's animal and plant species are focusing on the wrong factors, according to a new paper by a research team from the Wildlife Conservation Society, University of Queensland, and other organizations. The authors claim that most of the conservation science is missing the point when it comes to climate change.

While the majority of climate change scientists focus on the "direct" threats of changing temperatures and precipitation after 2031, far fewer researchers are studying how short-term human adaptation responses to seasonal changes and extreme weather events may threaten the survival of wildlife and ecosystems much sooner. These indirect effects are far more likely to cause extinctions, especially in the near term.

The review appears online in the international journal Diversity and Distributions.

"A review of the literature exploring the effects of climate change on biodiversity has revealed a gap in what may be the main challenge to the world's fauna and flora," said the senior author Dr. James Watson, Climate Change Program Director and a Principle Research Fellow at the University of Queensland.

The research team conducted a review of all available literature published over the past twelve years on the impacts of climate change on species and ecosystems. In their review, the authors classified studies examining the projected changes in temperature and precipitation as "direct threat" research.

Direct threats also included changes such as coral bleaching, shifting animal and plant life cycles and distributions, and habitat loss from sea level rise. Human responses to climate change—including everything from shifting agriculture patterns, the construction of sea walls to protect cities from sea level rise, changes in human fishing intensity, diversion of water, and other factors—were classified as "indirect threats."

The authors found that the vast majority of studies (approximately 89 percent of the research included in the review) focused exclusively on the direct impacts of climate change. Only 11 percent included both direct and indirect threats, and the authors found no studies focusing only on indirect threats.

"The reactions of human communities to these changes should be treated as a top priority by the research community," said Dr. Watson. "The short-term, indirect threats are not merely 'bumps in the road'—they are serious problems that require a greater analysis of social, economic, and political issues stemming from changes already occurring."

###

The authors of the essay are: Sarah Chapman of the University of Queensland; Karen Mustin of the University of Queensland; Anna R. Renwick of the University of Queensland; Daniel B. Segan of the University of Queensland and the Wildlife Conservation Society; David G. Hole of Conservation International and the University of Durham; Richard G. Pearson of University College London; and James E.M. Watson of the University of Queensland and the Wildlife Conservation Society.

John Delaney | Eurek Alert!
Further information:
http://www.wcs.org/

Further reports about: Conservation Queensland Wildlife construction ecosystems literature precipitation species

More articles from Ecology, The Environment and Conservation:

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht The European pet trade is jeopardising the survival of rare reptile species
13.07.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>