Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conservation scientists asking wrong questions on climate change impacts on wildlife

31.07.2014

Wildlife Conservation Society, University of Queensland, and others urge more focus on more imminent threats

Scientists studying the potential effects of climate change on the world's animal and plant species are focusing on the wrong factors, according to a new paper by a research team from the Wildlife Conservation Society, University of Queensland, and other organizations. The authors claim that most of the conservation science is missing the point when it comes to climate change.

While the majority of climate change scientists focus on the "direct" threats of changing temperatures and precipitation after 2031, far fewer researchers are studying how short-term human adaptation responses to seasonal changes and extreme weather events may threaten the survival of wildlife and ecosystems much sooner. These indirect effects are far more likely to cause extinctions, especially in the near term.

The review appears online in the international journal Diversity and Distributions.

"A review of the literature exploring the effects of climate change on biodiversity has revealed a gap in what may be the main challenge to the world's fauna and flora," said the senior author Dr. James Watson, Climate Change Program Director and a Principle Research Fellow at the University of Queensland.

The research team conducted a review of all available literature published over the past twelve years on the impacts of climate change on species and ecosystems. In their review, the authors classified studies examining the projected changes in temperature and precipitation as "direct threat" research.

Direct threats also included changes such as coral bleaching, shifting animal and plant life cycles and distributions, and habitat loss from sea level rise. Human responses to climate change—including everything from shifting agriculture patterns, the construction of sea walls to protect cities from sea level rise, changes in human fishing intensity, diversion of water, and other factors—were classified as "indirect threats."

The authors found that the vast majority of studies (approximately 89 percent of the research included in the review) focused exclusively on the direct impacts of climate change. Only 11 percent included both direct and indirect threats, and the authors found no studies focusing only on indirect threats.

"The reactions of human communities to these changes should be treated as a top priority by the research community," said Dr. Watson. "The short-term, indirect threats are not merely 'bumps in the road'—they are serious problems that require a greater analysis of social, economic, and political issues stemming from changes already occurring."

###

The authors of the essay are: Sarah Chapman of the University of Queensland; Karen Mustin of the University of Queensland; Anna R. Renwick of the University of Queensland; Daniel B. Segan of the University of Queensland and the Wildlife Conservation Society; David G. Hole of Conservation International and the University of Durham; Richard G. Pearson of University College London; and James E.M. Watson of the University of Queensland and the Wildlife Conservation Society.

John Delaney | Eurek Alert!
Further information:
http://www.wcs.org/

Further reports about: Conservation Queensland Wildlife construction ecosystems literature precipitation species

More articles from Ecology, The Environment and Conservation:

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>