Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coccolithophore blooms in the southwest Atlantic

22.10.2010
A study led by Dr Stuart Painter of the National Oceanography Centre helps explain the formation of huge phytoplankton blooms off the southeast coast of South America during the austral summer (December-January). The region supports the highly productive Patagonian Shelf marine ecosystem, which includes a globally important fishery.

Coccolithophores are key members of the marine phytoplankton community. They are abundant in the sunlit upper layer of the world’s oceans, often forming vast blooms that can be seen from space.

“Coccolithophores are a complex group of plankton and in many areas of the World Ocean satellite-based observations provide the only information we have. We often have little direct knowledge of the environmental factors coincident with these blooms,” explained Painter.

To understand the environmental factors controlling the development of coccolithophore blooms, Painter and his coauthors joined a cruise led by Dr William Balch of the Bigelow Laboratory (Maine, USA) and measured the salinity, chemistry and nutrient levels of the waters overlying the Patagonian Shelfand the shelf break, where the seafloor dips down to the deep seabed.

They also took measurements at the Brazil/Falklands Confluence to the northeast, where two major currents collide. These are the Brazil Current, which carries warm, saline subtropical waters southwards, and the Falklands Current, which brings cold, fresh and nutrient-rich water up from the sub-Antarctic region.

The continental shelf itself experiences strong tides and inputs from large rivers. And to complicate matters further, low-salinity water also enters the Patagonian Shelf region from the Pacific Ocean through the Magellan Strait in the south.

“The marine environment of the Patagonian Shelf region is well known for its complexity but what has been less clear until now is how this relates to the large blooms of coccolithophores in this region,” said Painter.

He and his collaborators identified five distinct water masses, each having different characteristics, such as temperature and nutrient concentration. These water masses also varied in the amount of chlorophyll in their surface waters, indicating different levels of phytoplankton production.

During the research cruise, a large bloom of the globally ubiquitous coccolthophore species Emiliania huxleyiformed in the sub-Antarctic Shelf Water (SSW), north of the Falkland Islands. The bloom extended north along the shelf break and coincided with the distribution of reflective calcite detected from space, which was otherwise diffusely distributed. Calcite is a carbonate mineral and a common constituent of limestone. It also forms the microscopic plates – ‘coccoliths’ – that surround coccolithophores, possibly for protection.

Chemical and nutrient measurements confirmed that conditions within the SSW were especially conducive for coccolithophore bloom formation, with the right cocktail of nutrients and seawater temperature.

However, the distribution of the SSW is strongly influenced by the shelf break front, which is the focus of intense biological production. It can vary from 20 to 200 kilometres in width determining exactly where conditions are right for coccolithophore blooms.

“The complex interaction of large currents and different water masses clearly exerts strong controls over the position of coccolithophore blooms in this region,”said Painter.

The research was carried out 2008, during the period of peak coccolithophore abundance (December), while aboard the America research vessel Roger Revelle. Remote sensing data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument the Aqua satellite was acquired from NASA.

The researchers were Stuart Painter, Alex Poulton and John Allen of the National Oceanography Centre, Rosalind Pidcock of the University of Southampton’s School of Ocean and Earth Science, and William Balch of the Bigelow Laboratory for Ocean Sciences, Maine, USA.

The Coccolithophores of the Patagonian Shelf (COPAS) research cruise was funded by the US National Science Foundation. Further financial support was provided by the US Defence Science and Technology Laboratory and the Natural Environment Research Council.

Publication:
Publication: Painter, S. C., Poulton, A. H., Allen, J. T., Pidcock, R. & Balch, W. M. The COPAS’08 expedition to the Patagonian Shelf: Physical and environmental conditions during the 2008 coccolithophore bloom. Continental Shelf Research (published online, 2010). doi:10.1016/j.csr.2010.08.013

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk
http://noc.ac.uk/news/coccolithophore-blooms-southwest-atlantic

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>