Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coccolithophore blooms in the southwest Atlantic

22.10.2010
A study led by Dr Stuart Painter of the National Oceanography Centre helps explain the formation of huge phytoplankton blooms off the southeast coast of South America during the austral summer (December-January). The region supports the highly productive Patagonian Shelf marine ecosystem, which includes a globally important fishery.

Coccolithophores are key members of the marine phytoplankton community. They are abundant in the sunlit upper layer of the world’s oceans, often forming vast blooms that can be seen from space.

“Coccolithophores are a complex group of plankton and in many areas of the World Ocean satellite-based observations provide the only information we have. We often have little direct knowledge of the environmental factors coincident with these blooms,” explained Painter.

To understand the environmental factors controlling the development of coccolithophore blooms, Painter and his coauthors joined a cruise led by Dr William Balch of the Bigelow Laboratory (Maine, USA) and measured the salinity, chemistry and nutrient levels of the waters overlying the Patagonian Shelfand the shelf break, where the seafloor dips down to the deep seabed.

They also took measurements at the Brazil/Falklands Confluence to the northeast, where two major currents collide. These are the Brazil Current, which carries warm, saline subtropical waters southwards, and the Falklands Current, which brings cold, fresh and nutrient-rich water up from the sub-Antarctic region.

The continental shelf itself experiences strong tides and inputs from large rivers. And to complicate matters further, low-salinity water also enters the Patagonian Shelf region from the Pacific Ocean through the Magellan Strait in the south.

“The marine environment of the Patagonian Shelf region is well known for its complexity but what has been less clear until now is how this relates to the large blooms of coccolithophores in this region,” said Painter.

He and his collaborators identified five distinct water masses, each having different characteristics, such as temperature and nutrient concentration. These water masses also varied in the amount of chlorophyll in their surface waters, indicating different levels of phytoplankton production.

During the research cruise, a large bloom of the globally ubiquitous coccolthophore species Emiliania huxleyiformed in the sub-Antarctic Shelf Water (SSW), north of the Falkland Islands. The bloom extended north along the shelf break and coincided with the distribution of reflective calcite detected from space, which was otherwise diffusely distributed. Calcite is a carbonate mineral and a common constituent of limestone. It also forms the microscopic plates – ‘coccoliths’ – that surround coccolithophores, possibly for protection.

Chemical and nutrient measurements confirmed that conditions within the SSW were especially conducive for coccolithophore bloom formation, with the right cocktail of nutrients and seawater temperature.

However, the distribution of the SSW is strongly influenced by the shelf break front, which is the focus of intense biological production. It can vary from 20 to 200 kilometres in width determining exactly where conditions are right for coccolithophore blooms.

“The complex interaction of large currents and different water masses clearly exerts strong controls over the position of coccolithophore blooms in this region,”said Painter.

The research was carried out 2008, during the period of peak coccolithophore abundance (December), while aboard the America research vessel Roger Revelle. Remote sensing data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument the Aqua satellite was acquired from NASA.

The researchers were Stuart Painter, Alex Poulton and John Allen of the National Oceanography Centre, Rosalind Pidcock of the University of Southampton’s School of Ocean and Earth Science, and William Balch of the Bigelow Laboratory for Ocean Sciences, Maine, USA.

The Coccolithophores of the Patagonian Shelf (COPAS) research cruise was funded by the US National Science Foundation. Further financial support was provided by the US Defence Science and Technology Laboratory and the Natural Environment Research Council.

Publication:
Publication: Painter, S. C., Poulton, A. H., Allen, J. T., Pidcock, R. & Balch, W. M. The COPAS’08 expedition to the Patagonian Shelf: Physical and environmental conditions during the 2008 coccolithophore bloom. Continental Shelf Research (published online, 2010). doi:10.1016/j.csr.2010.08.013

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk
http://noc.ac.uk/news/coccolithophore-blooms-southwest-atlantic

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>