Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coastal Waters Produce Halogenated Organic Molecules that Exacerbate Stratospheric Ozone Depletion

01.02.2012
Results from an international field measurement campaign coordinated by scientists from Heidelberg University’s Institute of Environmental Physics

Coastal waters of the tropical Western Pacific produce natural halogenated organic molecules involving chlorine, bromine and iodine atoms that may damage the stratospheric ozone layer.

This is the conclusion drawn from the initial findings of a field measurement campaign conducted in the South China Sea in the framework of the international SHIVA project. In November and December 2011, the scientists involved in this interdisciplinary project, which is coordinated by physicists from the Institute of Environmental Physics at Heidelberg University, investigated the oceanic sources and atmospheric transport pathways of these trace gases in the waters and air of Malaysia, Brunei and the Philippines.

The halogens chlorine, bromine and iodine are known as ozone-depleting substances. Micro-organisms such as macro-algae and phytoplankton form natural halogenated organic molecules, which are released into the air, where they eventually find their way into the stratosphere. The SHIVA project is testing conjectures based on earlier findings by scientists from Heidelberg University’s Institute of Environmental Physics that the ozone layer may not only be harmed by industrial “ozone killers” like chlorofluorocarbons (CFC), but also by these natural halogenated organic molecules. “Our measurements off the coast of Borneo, in the South China Sea and in the Sulu Sea indicate that the biologically productive coastal waters are particularly abundant sources of these trace gases”, says overall coordinator Prof. Dr. Klaus Pfeilsticker of Heidelberg University.
Involved in the field measurements were the German research ship “Sonne” and various smaller Malaysian vessels. “In addition, our British and Malaysian colleagues did laboratory analyses which indicate that rhodophyta, or red algae, are one of the prime producers of these halogenated organic molecules, due to a stress reaction triggered by oxygen”, Prof. Pfeilsticker adds.

The German Aerospace Center’s (Deutsches Zentrum für Luft- und Raumfahrt, DLR) research plane “Falcon” based in Miri (Borneo) was used to investigate the atmospheric transport pathways of the halogenated organic molecules and their decay products more closely. In the tropics, atmospheric transport of the targeted species to the mid troposphere is fairly rapid due to the shallow atmospheric boundary layer. In addition, in the rainy season convective systems like thunderstorms lift the air masses into the upper troposphere in a matter of hours. “The results from our measurements and models indicate that for the transport of ozone relevant and other trace gases into the upper tropical troposphere, the vertical transport due to intermittent convective systems is the most important factor”, says Prof. Pfeilsticker. “From there these gases are transported to the lower stratosphere by radiative heating in the tropical tropopause layer.”

Next, the scientists will evaluate and interpret the new data with the help of large-scale chemical, transport and global-climate models. “Our aim is to predict the future development of the ozone layer under the influence of anthropogenic climate change in the tropical oceans, atmospheric circulation and photochemistry”, says Prof. Pfeilsticker. In the coming years, the transport pathways of the halogenated organic molecules in the tropical tropopause region are to be investigated with high-flying planes like the NASA’s “Global Hawk”.

SHIVA is funded by resources totalling EUR 10 million from the European Union and various national institutions. The project involves 130 scientists from 18 research units in Asia and Europe. Alongside Heidelberg University’s Institute of Environmental Physics as project coordinator, the other German institutions involved are the DLR, the Helmholtz Centre for Ocean Research Kiel (GEOMAR), the Alfred Wegener Institute for Polar and Marine Research, Bremen University and Frankfurt University. Also taking part in the project are three British universities, three research institutions in France, Belgium and Norway and six research units in Malaysia and the Philippines. SHIVA stands for Stratospheric Ozone: Halogen Impact in a Varying Atmosphere. For more information, go to http://shiva.iup.uni-heidelberg.de.

Note for newsdesks:
Digital picture material is available from the Press Office.
Contact:
Prof. Dr. Klaus Pfeilsticker
Institute of Environmental Physics
phone: +49 6221 546401
klaus.pfeilsticker@iup.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de
http://shiva.iup.uni-heidelberg.de.

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>