Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why Are Coastal Salt Marshes Falling Apart?

Too many nutrients can cause extensive loss of marshes

Salt marshes have been disintegrating and dying over the past two decades along the U.S. Eastern Seaboard and other highly developed coastlines without anyone fully understanding why.

Where are all the salt marshes going? Excess nutrients may be to blame for their decline.
Credit: NSF Plum Island Ecosystems LTER Site

This week in the journal Nature, scientist Linda Deegan of the Marine Biological Laboratory (MBL) in Woods Hole, Mass., and colleagues report that nutrients--such as nitrogen and phosphorus from septic and sewer systems and lawn fertilizers--can cause salt marsh loss.

"Salt marshes are a critical interface between the land and sea," Deegan says. "They provide habitat for fish, birds and shellfish, protect coastal cities from storms and take nutrients out of the water from upland areas, which protect coastal bays from over-pollution."

Disappearance of healthy salt marshes has accelerated in recent decades, with some losses caused by sea-level rise and development.

"This is the first study to show that nutrient enrichment can be a driver of salt marsh loss, as well," says David Johnson of MBL, a member of the team since the project began in 2003.

This conclusion, which surprised the scientists, emerged from a long-term, large-scale study of salt marsh landscapes in an undeveloped coastline section of the Plum Island estuary in Massachusetts.

The research took place at Plum Island Ecosystems, one in a network of 26 National Science Foundation (NSF) Long-Term Ecological Research (LTER) sites located in ecosystems from coral reefs to deserts and grasslands to the polar regions.

"This is a landmark study addressing the drivers of change in productive salt marsh ecosystems, and it's a stellar example of the value of supporting LTER sites," says David Garrison, program director in NSF's Division of Ocean Sciences, which supports the LTER program along with NSF's Division of Environmental Biology.

For more than nine years at Plum Island, the scientists added nitrogen and phosphorus to the tidal water flushing through the marsh's creeks at levels typical of nutrient enrichment in densely developed areas, such as Cape Cod, Mass., and Long Island, N.Y.

A few years after the experiment began, wide cracks began forming in the grassy banks of the tidal creeks, which eventually slumped down and collapsed into the muddy creeks.

"The long-term effect is conversion of a vegetated marsh into a mudflat, which is a much less productive ecosystem and does not provide the same benefits to humans or to habitat for fish and wildlife," Deegan says.

Until this study, it seemed that salt marshes had unlimited capacity for nutrient removal, with no harmful effects on the marshes themselves.

"Now we understand that there are limits to what salt marshes can do," Deegan says.

"And in many places along the Eastern Seaboard--such as Jamaica Bay in New York, where marshes have been falling apart for years--we have exceeded those limits."

The disintegration of the nutrient-enriched marsh in this study happened in several stages.

In the first few years, the nutrients caused the marsh grass (primarily cordgrass Spartina spp.) along the creek edges to get greener and grow taller, "just like when you add fertilizer to your garden," Deegan says.

This taller grass also, however, produced fewer roots and rhizomes, which normally help stabilize the edge of the marsh creek.

The added nutrients also boosted microbial decomposition of leaves, stems and other biomass in the marsh peat, which further destabilized the creek banks.

Eventually, the poorly rooted grass grew too tall and fell over, where the twice-daily tides tugged and pulled it. The weakened bank then cracked and fell into the creek.

By year six of the experiment, the scientists started seeing effects at higher marsh elevations above the lower creek banks.

Three times more cracks, and bigger cracks, emerged at the top of the banks parallel to the creeks, compared with a control marsh where no nutrients were added.

Eventually, parts of the higher marsh also broke off and slid down toward the creek, which the scientists call the ‘toupee effect' because it leaves behind patches of bare, unvegetated mud.

All told, at least 2.5 times more chunks of marsh fell into the creeks in the nutrient-enriched marsh than in the control system.

"We honestly did not anticipate the changes we measured," says Deegan.

"Based on prior small-scale experiments, we predicted nutrient enrichment would cause the marsh grass to grow better and remain stable.

"But when we allowed different parts of the ecosystem to interact with the nitrogen enrichment over time, the small changes we saw in the first few years resulted in the creek banks later falling apart. This could not have been extrapolated from smaller-scale, shorter-term studies."

Nutrient enrichment of coastal areas is known to cause harmful algal blooms that create low-oxygen conditions and kill off marine life.

"Now we understand that nutrient enrichment also causes a very important loss of salt marsh habitat for fish and shellfish," Deegan says.

"This is one more reason we need better treatment of household waste in our towns and cities."

People can help by not using fertilizers on their lawns and gardens. "If you have a green lawn because you are fertilizing it, you are contributing to loss of salt marshes and ultimately of fish," Deegan says.

The study was accomplished with the cooperation of officials from the towns of Ipswich and Rowley, Mass., and the Essex County Green Belt Association.

"They recognized the importance of the work," Johnson says. "They realized that what we discovered would help their towns, and society in general, make better decisions about treating the excessive nutrient enrichment of our coasts."

In the next phase of the research, the scientists will study the recovery of the nutrient-enriched marsh.

"After we stop adding the nitrogen, how long does it take the system to rebound to its natural state?" Deegan asks.

The information will be important in reclaiming the health of salt marshes that are currently suffering from nutrient enrichment.

Co-authors of the Nature paper, in addition to Deegan and Johnson, are: Scott Warren of Connecticut College; Bruce Peterson of MBL, John Fleeger of Louisiana State University, Sergio Fagherazzi of Boston University and Wilfred Wollheim of the University of New Hampshire.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734
Diana Kenney, MBL (508) 289-7139
Related Websites
NSF Long-Term Ecological Research Network:
NSF Plum Island Ecosystems LTER Site:
NSF LTER Network Discovery Articles:

Salt Marshes Video: NSF Plum Island Ecosystems LTER Site:

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Useful NSF Web Sites:
NSF Home Page:
NSF News:
For the News Media:
Science and Engineering Statistics:
Awards Searches:

Cheryl Dybas | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>