Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coastal Creatures May Have Reduced Ability to Fight Off Infections in Acidified Oceans

09.08.2010
Human impact is causing lower oxygen and higher carbon dioxide levels in coastal water bodies. Increased levels of carbon dioxide cause the water to become more acidic, having dramatic effects on the lifestyles of the wildlife that call these regions home. The problems are expected to worsen if steps aren’t taken to reduce greenhouse emissions and minimize nutrient-rich run-off from developed areas along our coastlines.

The ocean is filled with a soup of bacteria and viruses. The animals living in these environments are constantly under assault by pathogens and need to be able to mount an immune response to protect themselves from infection, especially if they have an injury or wound that is openly exposed to the water.

Louis Burnett, professor of biology and director of the Grice Marine Laboratory of the College of Charleston, and Karen Burnett, research associate professor at Grice Marine Laboratory of the College of Charleston, study the effects of low oxygen and high carbon dioxide on organisms’ immune systems. They have found that organisms in these conditions can’t fight off infections as well as animals living in oxygen rich, low carbon dioxide environments.

The Burnetts will be presenting their findings at the Global Change and Global Science: Comparative Physiology in a Changing World conference from August 4-7, 2010 in Westminster, Colorado. This conference is in part sponsored by the American Physiological Society (http://www.the-aps.org). The full conference program can be found at http://www.the-aps.org/meetings/aps/comparative/preprogram.htm.

Decreased Ability to Fight Infection
The researchers examined fish, oysters, crabs and shrimp, and showed that all these animals have a decreased ability to fight off infection of Vibrio bacteria when subjected to low oxygen, high carbon dioxide conditions. It takes about half as much bacteria to administer a lethal dose to a creature in a low oxygen, high carbon dioxide environment.

“Our approach is exciting because traditionally physiologists haven’t considered bacteria or disease as a natural environmental barrier, so it’s a pretty open field,” says Louis Burnett.

Apparently, if marine animals are challenged with a pathogen, a large number of their blood cells disappear within a few minutes. The blood cells clump up to attack the pathogen, but also lodge in the gills (the sea critter version of lungs), where the body gets it oxygen. The scientists see evidence that sea animals fighting off infection lower their metabolism, which slows down other important processes like making new proteins.

“Everything we see points to the fact that if an animal that mounts a successful immune response then their gill function and ability to exchange oxygen is reduced by about 40 percent, which is why they seem to be having such problems living in low oxygen conditions,” says Karen Burnett. “If you add high carbon dioxide to that, it gets worse.”

The researchers are now using microarrays to measure changes in gene expression in marine organisms that are exposed to bacteria under low oxygen, high carbon dioxide conditions.

“After exposure to these conditions for only a day, animals at the molecular level have given up in trying to adapt to the situation, and they are going into molecular pathways that indicate cell death,” says Karen Burnett.

The coastal animals the Burnett’s study live in environments where natural levels of oxygen and carbon dioxide fluctuate. Theoretically, these animals are already adapted for varied environments, and yet they still struggle with these changing conditions. It’s alarming that deep-water animals may be much more affected by ocean acidification, since they are not used to the ebb and flow of oxygen and carbon dioxide levels.

“Some of the models for how the coastal organisms adapt may help researchers predict how deep water organisms are going to be affected by overall climate change too,” says Louis Burnett.

NOTE TO EDITORS: Dr. Burnett will discuss his findings at the conference Global Change and Global Science: Comparative Physiology in a Changing World, sponsored by the American Physiological Society (APS; www.the-aps.org) To arrange an interview with Dr. Burnett, please contact Donna Krupa at 301.634.7209 or dkrupa@the-aps.org. To see the full conference program log on to http://www.the-aps.org/meetings/aps/comparative/preprogram.htm.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (www.The-APS.org/press) has been an integral part of this discovery process since it was established in 1887.

Donna Krupa | Newswise Science News
Further information:
http://www.the-aps.org

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>