Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud Radar — Predicting the weather more accurately

25.09.2008
The weather. It’s the one topic of conversation that unites Britain – umbrella or sun cream?

Now scientists at the Science and Technology Facilities Council have developed a system that measures the individual layers of cloud above us which will make answering the all-important weather questions much easier in future.

The Cloud Radar will not only allow forecasters to predict the weather more precisely, the information gathered will also enable aircraft pilots to judge more accurately whether it is safe to take off and land in diverse weather conditions, offering a powerful safety capability for civil airports and military air bases.

Developed over 10 years by researchers and engineers at the STFC Rutherford Appleton Laboratory, in collaboration with the Met Office, the Cloud Radar can take a complete and accurate profile of cloud or fog up to 5 miles overhead. Operating at 94 GHz, 50 times higher in frequency than most mobile phones, the radar measures the cloud base height, its thickness, density and internal structure as well as providing similar information on cloud layers at higher altitudes.

The earliest version of the cloud radar was built to demonstrate that a low power system operating at high frequency could compete with more common radar types. It was built from the spare components of a radar altimeter designed to operate on a satellite, so that it used small, low-power components in contrast to previous cloud radars that use expensive pulsed sources which consume many times more power and have limited lifetimes.

Brian Moyna, Senior Systems Engineer at STFC said: “In a nutshell, our Cloud Radar takes a slice of cloud and provides a complete and accurate vertical profile. Compared to conventional pulsed radar instruments, this radar is a low power, high sensitivity, portable instrument that uses all solid state components for lower cost and increased reliability.”

The Met Office has just purchased a Cloud Radar which is being trialled at sites around Britain. Additionally, a Cloud Radar has also been acquired by the University of Marburg in Germany.

The radar consists of a millimetre-wave frequency source that continuously emits a low power signal in the vertical direction that is frequency modulated. A signal is returned, mainly due to what is known as ‘back-scattering’ from water droplets and ice crystals in the atmosphere. This signal is picked up by a receiver and converted to a microwave signal, which is then digitised, analysed and a real-time image of the returned signal intensity versus altitude is displayed for the user.

The new Cloud Radar is the result of several hundred thousands of pounds of investment into the Space Science & Technology Department at STFC with proof of concept funding from CLIK, STFC’s wholly-owned technology exploitation company, along with the Met Office.

Tim Bestwick, Chief Executive of CLIK said “This is an exciting example of how fundamental scientific research can result in such useful and practical applications, in this case, with more accurate weather forecasting and the potential to make our skies a safer place.”

Wendy Taylor | alfa
Further information:
http://www.stfc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>