Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud Radar — Predicting the weather more accurately

25.09.2008
The weather. It’s the one topic of conversation that unites Britain – umbrella or sun cream?

Now scientists at the Science and Technology Facilities Council have developed a system that measures the individual layers of cloud above us which will make answering the all-important weather questions much easier in future.

The Cloud Radar will not only allow forecasters to predict the weather more precisely, the information gathered will also enable aircraft pilots to judge more accurately whether it is safe to take off and land in diverse weather conditions, offering a powerful safety capability for civil airports and military air bases.

Developed over 10 years by researchers and engineers at the STFC Rutherford Appleton Laboratory, in collaboration with the Met Office, the Cloud Radar can take a complete and accurate profile of cloud or fog up to 5 miles overhead. Operating at 94 GHz, 50 times higher in frequency than most mobile phones, the radar measures the cloud base height, its thickness, density and internal structure as well as providing similar information on cloud layers at higher altitudes.

The earliest version of the cloud radar was built to demonstrate that a low power system operating at high frequency could compete with more common radar types. It was built from the spare components of a radar altimeter designed to operate on a satellite, so that it used small, low-power components in contrast to previous cloud radars that use expensive pulsed sources which consume many times more power and have limited lifetimes.

Brian Moyna, Senior Systems Engineer at STFC said: “In a nutshell, our Cloud Radar takes a slice of cloud and provides a complete and accurate vertical profile. Compared to conventional pulsed radar instruments, this radar is a low power, high sensitivity, portable instrument that uses all solid state components for lower cost and increased reliability.”

The Met Office has just purchased a Cloud Radar which is being trialled at sites around Britain. Additionally, a Cloud Radar has also been acquired by the University of Marburg in Germany.

The radar consists of a millimetre-wave frequency source that continuously emits a low power signal in the vertical direction that is frequency modulated. A signal is returned, mainly due to what is known as ‘back-scattering’ from water droplets and ice crystals in the atmosphere. This signal is picked up by a receiver and converted to a microwave signal, which is then digitised, analysed and a real-time image of the returned signal intensity versus altitude is displayed for the user.

The new Cloud Radar is the result of several hundred thousands of pounds of investment into the Space Science & Technology Department at STFC with proof of concept funding from CLIK, STFC’s wholly-owned technology exploitation company, along with the Met Office.

Tim Bestwick, Chief Executive of CLIK said “This is an exciting example of how fundamental scientific research can result in such useful and practical applications, in this case, with more accurate weather forecasting and the potential to make our skies a safer place.”

Wendy Taylor | alfa
Further information:
http://www.stfc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>