Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate-related changes on the Antarctic peninsula

19.03.2009
Being driven from the top and the bottom of the ecosystem

Scientists have long established that the Antarctic Peninsula is one of the most rapidly warming spots on Earth. Now, new research using detailed satellite data indicates that the changing climate is affecting not just the penguins at the apex of the food chain, but simultaneously the microscopic life that is the base of the ecosystem.

The research was published in the March 13 edition of Science magazine by researchers with the National Science Foundation's (NSF) LTER (Long Term Ecological Research) program. The LTER, which has 26 sites around the globe, including two in Antarctica, enables tracking of ecological variables over time, so that the mechanisms of climate change impact on ecosystems can be revealed. The specific findings were made by researchers with the Palmer LTER, using data collected near Palmer Station and from the research vessel Laurence M. Gould. Both Palmer Station and the Laurence M. Gould are operated by NSF's Office of Polar Programs.

Hugh Ducklow, of the Marie Biological Laboratory at Woods Hole, the principal investigator for the Palmer LTER project, said that the new findings are scientifically significant, but they also are consistent with the climate trends on the Peninsula and other observed changes.

However, it took new scientific tools and analytical work by post-doctoral fellow Martin Montes Hugo to verify scientifically what scientists had been inferring from other changes for some time.

"I have to say the findings weren't a surprise; I think with the weight of all the other observations that we had on changes happening to organisms higher up in the food chain, we thought that phytoplankton weren't going to escape this level of climate change," Ducklow said. "But it took Martin to have all the right tools and the abilities to go in and do the analysis and prove what we suspected."

Those data, gathered over years, were essential to tracking patterns that supported the new findings.

"That's the beauty of the LTER program," he added.

Over the past 50 years, winter temperatures on the Peninsula have risen five times faster than the global average and the duration of sea-ice coverage has decreased. A warm, moist maritime climate has moved into the northern Peninsula region, pushing the continental, polar conditions southward.

As a result, the prevalence of species that depend on sea ice, such as Adelie penguins, Antarctic silverfish and krill, has decreased in the Peninsula's northern region, and new species that typically avoid ice, such as Gentoo and Chinstrap penguins, and lanternfish are moving into the habitat.

The LTER researchers show that satellite data on ocean color, temperature, sea ice and winds, indicate that phytoplankton at the base of the food chain are also responding to changes in sea-ice cover and winds driven by climate change. However, there are contrasting changes in northern and southern regions, and the satellite and ground-based data provide insights into the forcing mechanisms for each region.

The researchers weren't surprised that primary productivity in the waters of the Peninsula has changed dramatically over the last 20 years. But the contrasting changes in the north and south were a surprise.

In the north, where ice-dependent species are disappearing, sea ice cover has declined and wind stress has increased. The wind intensity and reduced sea ice causes greater mixing of the surface ocean waters. The result--a deepening of the surface mixed layer that lowers primary productivity rates and causes changes in phytoplankton species, because phytoplankton cells are exposed to less light.

Conversely, in the southern Peninsula waters, where ice-dependent species continue to thrive, the situation is reversed. There, sea ice loss has been in areas where it formerly covered most of the ocean surface for most of the year. Now, ice is less prevalent, exposing more water to sunlight and stimulating phytoplankton growth. The ice loss in the South, combined with less wind stress, promotes the formation of a shallower mixed layer, with increased light and the development of large phytoplankton cells, such as diatoms. Diatoms, single-celled creatures, form the base of the rich Antarctic food web that includes krill, penguins and whales.

Peter West | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>