Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Changes Faster than Species Can Adapt

06.12.2011
The ranges of species will have to change dramatically as a result of climate change between now and 2100 because the climate will change more than 100 times faster than the rate at which species can adapt, according to a newly published study by Indiana University researchers.

The study, which focuses on North American rattlesnakes, finds that the rate of future change in suitable habitat will be two to three orders of magnitude greater than the average change over the past 300 millennia, a time that included three major glacial cycles and significant variation in climate and temperature.

“We find that, over the next 90 years, at best these species’ ranges will change more than 100 times faster than they have during the past 320,000 years,” said Michelle Lawing, lead author of the paper and a doctoral candidate in geological sciences and biology at IU Bloomington. “This rate of change is unlike anything these species have experienced, probably since their formation.”

The study, “Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change,” was published by the online science journal PLoS One. Co-author is P. David Polly, associate professor in the Department of Geological Sciences in the IU Bloomington College of Arts and Sciences.

The researchers make use of the fact that species have been responding to climate change throughout their history and their past responses can inform what to expect in the future. They synthesize information from climate cycle models, indicators of climate from the geological record, evolution of rattlesnake species and other data to develop what they call “paleophylogeographic models” for rattlesnake ranges. This enables them to map the expansion and contraction at 4,000-year intervals of the ranges of 11 North American species of the rattlesnake genus Crotalus.

Projecting the models into the future, the researchers calculate the expected changes in range at the lower and upper extremes of warming predicted by the Intergovernmental Panel on Climate Change — between 1.1 degree and 6.4 degrees Celsius. They calculate that rattlesnake ranges have moved an average of only 2.3 meters a year over the past 320,000 years and that their tolerances to climate have evolved about 100 to 1,000 times slower, indicating that range shifts are the only way that rattlesnakes have coped with climate change in the recent past. With projected climate change in the next 90 years, the ranges would be displaced by a remarkable 430 meters to 2,400 meters a year.

Increasing temperature does not necessarily mean expanded suitable habitats for rattlesnakes. The timber rattlesnake, for example, is now found throughout the Eastern United States. The study finds that, with a temperature increase of 1.1 degree Celsius over the next 90 years, its range would expand slightly into New York, New England and Texas. But with an increase of 6.4 degrees, its range would shrink to a small area on the Tennessee-North Carolina border. The giant eastern diamondback rattlesnake would be displaced entirely from its current range in the Southeastern U.S. with a temperature increase of 6.4 degrees.

The findings suggest snakes wouldn’t be able to move fast enough to keep up with the change in suitable habitat. The authors suggest the creation of habitat corridors and managed relocation may be needed to preserve some species.

Rattlesnakes are good indicators of climate change because they are ectotherms, which depend on the environment to regulate their body temperatures. But Lawing and Polly note that many organisms will be affected by climate change, and their study provides a model for examining what may happen with other species. Their future research could address the past and future effects of climate change on other types of snakes and on the biological communities of snakes.

The article is available online at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028554.

Steve Hinnefeld | Newswise Science News
Further information:
http://www.iu.edu

Further reports about: Bloomington Climate change PLoS One Science TV Unique species adapt

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>