Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Changes Faster than Species Can Adapt

06.12.2011
The ranges of species will have to change dramatically as a result of climate change between now and 2100 because the climate will change more than 100 times faster than the rate at which species can adapt, according to a newly published study by Indiana University researchers.

The study, which focuses on North American rattlesnakes, finds that the rate of future change in suitable habitat will be two to three orders of magnitude greater than the average change over the past 300 millennia, a time that included three major glacial cycles and significant variation in climate and temperature.

“We find that, over the next 90 years, at best these species’ ranges will change more than 100 times faster than they have during the past 320,000 years,” said Michelle Lawing, lead author of the paper and a doctoral candidate in geological sciences and biology at IU Bloomington. “This rate of change is unlike anything these species have experienced, probably since their formation.”

The study, “Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change,” was published by the online science journal PLoS One. Co-author is P. David Polly, associate professor in the Department of Geological Sciences in the IU Bloomington College of Arts and Sciences.

The researchers make use of the fact that species have been responding to climate change throughout their history and their past responses can inform what to expect in the future. They synthesize information from climate cycle models, indicators of climate from the geological record, evolution of rattlesnake species and other data to develop what they call “paleophylogeographic models” for rattlesnake ranges. This enables them to map the expansion and contraction at 4,000-year intervals of the ranges of 11 North American species of the rattlesnake genus Crotalus.

Projecting the models into the future, the researchers calculate the expected changes in range at the lower and upper extremes of warming predicted by the Intergovernmental Panel on Climate Change — between 1.1 degree and 6.4 degrees Celsius. They calculate that rattlesnake ranges have moved an average of only 2.3 meters a year over the past 320,000 years and that their tolerances to climate have evolved about 100 to 1,000 times slower, indicating that range shifts are the only way that rattlesnakes have coped with climate change in the recent past. With projected climate change in the next 90 years, the ranges would be displaced by a remarkable 430 meters to 2,400 meters a year.

Increasing temperature does not necessarily mean expanded suitable habitats for rattlesnakes. The timber rattlesnake, for example, is now found throughout the Eastern United States. The study finds that, with a temperature increase of 1.1 degree Celsius over the next 90 years, its range would expand slightly into New York, New England and Texas. But with an increase of 6.4 degrees, its range would shrink to a small area on the Tennessee-North Carolina border. The giant eastern diamondback rattlesnake would be displaced entirely from its current range in the Southeastern U.S. with a temperature increase of 6.4 degrees.

The findings suggest snakes wouldn’t be able to move fast enough to keep up with the change in suitable habitat. The authors suggest the creation of habitat corridors and managed relocation may be needed to preserve some species.

Rattlesnakes are good indicators of climate change because they are ectotherms, which depend on the environment to regulate their body temperatures. But Lawing and Polly note that many organisms will be affected by climate change, and their study provides a model for examining what may happen with other species. Their future research could address the past and future effects of climate change on other types of snakes and on the biological communities of snakes.

The article is available online at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028554.

Steve Hinnefeld | Newswise Science News
Further information:
http://www.iu.edu

Further reports about: Bloomington Climate change PLoS One Science TV Unique species adapt

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>