Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate changes the Distribution of Plants and Animals

09.01.2014
Swiss plants, butterflies and birds have moved 8 to 42 meters uphill between 2003 and 2010, as scientists from the University of Basel write in the online journal “Plos One”.

Climate warming is changing the distribution of plants and animals worldwide. Recently it was shown that in the past two decades, European bird and butterfly communities have moved on average 37 and 114 kilometers to the north, respectively.


Plants are moving uphill due to rising temperatures. In figure: Leopard’s bane (Doronicum clusii). Illustration: Jörg Schmill

Tobias Roth and Valentin Amrhein from the University of Basel now found that in Switzerland, plant, butterfly and bird species also moved uphill. At an altitude of 500 meters, plants have on average shifted uphill 8 meters, butterflies 38 meters and birds 42 meters. The study was based on data collected between 2003 and 2010 in 214 sample areas up to an altitude of 3000 meters, covering all major ecosystems of Central Europe.

“An average of eight meters difference in altitude in eight years and across all plant species is quite impressive for the often not very mobile plant communities”, says Valentin Amrhein. “The results show that the biological impacts of climate change will not only become apparent in the long term. Animals and plants are already today adapting to the rising temperatures at a surprising pace.”

Different Trends above the Tree Line

While birds also moved uphill at higher altitudes, plants and butterflies surprisingly showed no significant changes in altitude above the tree line. Contrary to the developments in lower altitudes, alpine plants and butterflies even showed a tendency towards a downhill movement. Explanations for this phenomenon have yet to be found. “It is possible that land-use related changes in habitats near the tree line outweigh the effects of climate warming. For example, many alpine pastures have been abandoned in recent years”, says Tobias Roth. “It is also possible that alpine plants are better protected against changing climatic conditions, due to the highly varied surface of alpine landscapes.”

In any case, the fact that plant and butterfly communities have changed towards warm-dwelling species at low altitudes but remained relatively stable at higher altitudes cannot be explained with different temperature developments across altitudes. The scientists also studied data on air temperature of 14 meteorological stations: During the 16 years between 1995 and 2010, the summer temperatures in Switzerland rose by about 0.07 °C per year at all altitudes.

Original Citation
Tobias Roth, Matthias Plattner & Valentin Amrhein
Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude

Plos One, published January 8th, 2014 | doi: 10.1371/journal.pone.0082490

Further Information
• PD Dr. Valentin Amrhein, University of Basel, Department of Environmental Sciences, Tel. +41 79 848 99 33, E-Mail: v.amrhein@unibas.ch

• Dr. Tobias Roth, Hintermann & Weber AG, 4153 Reinach, Tel. +41 61 717 88 62, E-Mail: roth@hintermannweber.ch

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch
http://www.unibas.ch/index.cfm?uuid=C261442790D4E1652C2B62C86D07CD2C&type=search&show_long=2

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>