Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Clues in the Southern Ocean - Ocean currents surprisingly resistant to intensifying winds

24.11.2008
The Antarctic Circumpolar Current is the current system with the largest volume transport in the world ocean. Between 40° and 60°S strong westerlies move about 140 million cubic meters of water per second around the Antarctic continent (this is about five times the transport of the Gulf Stream).

Vertical motions associated with this current have been responsible for transporting a substantial fraction of the anthropogenic carbon dioxide emissions from the atmosphere to the deep ocean, thereby effectively damping the rate of global warming.

Investigations in this key region of the world ocean have been hampered by a sparse database due to the logistical challenges for ship based expeditions in the high-latitude Southern Ocean.

“In our study we used data obtained by the international Argo Programme”, explains Prof. Claus Böning from the Leibniz Institute of Marine Sciences (IFM-GEOMAR) in Kiel, Germany. Argo is a system of currently 3000 autonomous free-floating robotic systems which are surveying the world ocean. Every 10 days these buoys measure temperature and salinity profiles over the upper 2000 meters. These measurements are transmitted to land stations via satellite. “For this study about 52,000 profiles of more than 600 Argo-drifters in the Southern Ocean were used and compared with historic ship measurements”, explains oceanographer Astrid Dispert from IFM-GEOMAR. For this analysis the extensive archives of the Australian marine research centre in Hobart, Tasmania were also used.

As expected, the observations in the subpolar ocean demonstrate an increase of water temperature and a decrease in salinity at the same time. Nevertheless, in contradiction to the simulations of various climate models the data show no significant changes in water transport. “Our results point to one important thing: Eddies which are currently not resolved in climate models might be the key process in controlling the transport of the ACC”, Prof. Böning explains. Hence, his conclusion is that investigations with high-resolution ocean models are required to test this hypothesis. “Of course, besides the simulations we also need further observations”, adds Prof. Martin Visbeck (IFM-GEOMAR). “Thanks to the international Argo observations programme we now have continuously access to data from a worldwide network of more than 3000 profiling-drifters. This is a quantum leap in the field of ocean observations, which, together with high resolution modelling gives us new insights about long-term changes in the ocean.“

Further investigations have to show whether the results are robust. If confirmed, this would in one way be good news: Until now the Southern Ocean is the biggest oceanic sink for anthropogenic carbon dioxide and therefore a crucial regulator for the atmospheric carbon dioxide concentration. Climate models predicted a severe reduction in the southern ocean carbon dioxide uptake due to wind-forced changes in the current fields. Now high-resolution models are needed to assess the role of the hitherto unresolved ocean eddies in the Southern Ocean’s response to the progressive changes in the atmospheric conditions.

Scientific Paper:
Böning, C.W., A. Dispert, M. Visbeck, S. Rintoul and F.U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, doi: 10.1038/ngeo362, advanced online publication.
Contact:
Prof. Dr. Claus Böning, Tel. +49-431 – 600 4003, cboening@ifm-geomar.de
Dr. Andreas Villwock (Public relations), Tel. +49-431 – 600 2802, avillwock@ifm-geomar.de

Andreas Villwock | alfa
Further information:
http://www.ifm-geomar.de

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>