Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Will Threaten Fish by Drying Out Southwest U.S. Streams, Study Predicts

19.08.2014

Modeling suggests fish will lose habitat as steady flow of surface water is depleted

Fish species native to a major Arizona watershed may lose access to important segments of their habitat by 2050 as surface water flow is reduced by the effects of climate warming, new research suggests.

Most of these fish species, found in the Verde River Basin, are already threatened or endangered. Their survival relies on easy access to various resources throughout the river and its tributary streams. The species include the speckled dace (Rhinichthys osculus), roundtail chub (Gila robusta) and Sonora sucker (Catostomus insignis).

A key component of these streams is hydrologic connectivity – a steady flow of surface water throughout the system that enables fish to make use of the entire watershed as needed for eating, spawning and raising offspring.

Models that researchers produced to gauge the effects of climate change on the watershed suggest that by the mid 21st century, the network will experience a 17 percent increase in the frequency of stream drying events and a 27 percent increase in the frequency of zero-flow days.

“We have portions of the channel that are going to dry more frequently and for longer periods of time,” said lead author Kristin Jaeger, assistant professor in The Ohio State University School of Environment and Natural Resources. “As a result, the network will become fragmented, contracting into isolated, separated pools.

“If water is flowing throughout the network, fish are able to access all parts of it and make use of whatever resources are there. But when systems dry down, temporary fragmented systems develop that force fish into smaller, sometimes isolated channel reaches or pools until dry channels wet up again.”

This study covers climate change’s effects on surface water availability from precipitation and temperature changes. It does not take into account any withdrawals of groundwater that will be needed during droughts to support the estimated 50 percent or more increase in Arizona’s population by 2050.

“These estimates are conservative,” said Jaeger, who conducted the study with co-authors Julian Olden and Noel Pelland of the University of Washington. The study is published in the Proceedings of the National Academy of Sciences.

The researchers used a rainfall runoff model, the Soil and Water Assessment Tool (SWAT), which incorporates the study basin’s elevation, terrain, soil, land use, vegetation coverage, and both current and future climate data, including precipitation and temperature.

“It’s a hydrological model that routes water received from precipitation through the landscape, a portion of which eventually becomes streamflow in the river,” Jaeger said. “We partitioned the watershed into many smaller pieces all linked to each other, with nodes placed 2 kilometers apart throughout the entire river network to evaluate if that portion of the river channel at an individual node supported streamflow for a given day.”

Jaeger describes the river network, as envisioned by this model, as a mosaic of wet and dry patches. Piecing data from all of those nodes together, the researchers established an index of connectivity for the entire watershed, which predicts that the mid-century and late-century climate will reduce connectivity by 6 to 9 percent over the course of a year and by up to 12 to 18 percent during spring spawning months.

“The index decreases that are predicted by the model will affect spawning the most,” said Jaeger, who also holds an appointment with the Ohio Agricultural Research and Development Center. “During the spring spawning period, fish are more mobile, traveling longer distances to access necessary habitat. Projected decreased connectivity compromises access to different parts of the network.”

Flowing portions of the system will diminish between 8 and 20 percent in spring and early summer, producing lengthier channels that will dry more frequently and over longer periods of time. These changes will reduce available habitat for fish and force them to travel longer distances for resources once channels rewet, Jaeger said.

The fish are already subject to stressors on the system, including both surface and groundwater extraction for irrigation and drinking water, loss of habitat and the introduction of nonnative species that prey on the native fish, Jaeger noted. The overall system’s connectivity is also already compromised, as well, because of existing dry conditions in the American Southwest.

“These fish are important cogs in the wheel of this greater ecosystem,” Jaeger said. “Loss of endemic species is a big deal in and of itself, and native species evaluated in this study are particularly evolved to this watershed. In this river network that currently supports a relatively high level of biodiversity, the suite of endemic fish species are filling different niches in the ecosystem, which allows the system to be more resilient to disturbances such as drought.

“If species are pushed over the edge to extinction, then what they bring to the ecosystem will be lost and potentially very difficult to replace.”

This project was funded by the Department of Defense Strategic Environmental Research and Development Program.

Kristin Jaeger | Eurek Alert!
Further information:
http://news.osu.edu/news/2014/08/18/climate-change-will-threaten-fish-by-drying-out-southwest-us-streams-study-predicts/

Further reports about: Climate Fish Southwest ecosystem endemic habitat native resources species temperature

More articles from Ecology, The Environment and Conservation:

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht The European pet trade is jeopardising the survival of rare reptile species
13.07.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>