Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change will upset vital ocean chemical cycles

09.09.2013
New research from the University of East Anglia shows that rising ocean temperatures will upset natural cycles of carbon dioxide, nitrogen and phosphorous.

Plankton plays an important role in the ocean's carbon cycle by removing half of all CO2 from the atmosphere during photosynthesis and storing it deep under the sea – isolated from the atmosphere for centuries.

Findings published today in the journal Nature Climate Change reveal that water temperature has a direct impact on maintaining the delicate plankton ecosystem of our oceans.

The new research means that ocean warming will impact plankton, and in turn drive a vicious cycle of climate change.

Researchers from UEA's School of Environmental Sciences and the School of Computing Sciences investigated phytoplankton – microscopic plant-like organisms that rely on photosynthesis to reproduce and grow.

Lead researcher Dr Thomas Mock, said: "Phytoplankton, including micro-algae, are responsible for half of the carbon dioxide that is naturally removed from the atmosphere. As well as being vital to climate control, it also creates enough oxygen for every other breath we take, and forms the base of the food chain for fisheries so it is incredibly important for food security.

"Previous studies have shown that phytoplankton communities respond to global warming by changes in diversity and productivity. But with our study we show that warmer temperatures directly impact the chemical cycles in plankton, which has not been shown before."

Collaborators from the University of Exeter, who are co-authors of this study, developed computer generated models to create a global ecosystem model that took into account world ocean temperatures, 1.5 million plankton DNA sequences taken from samples, and biochemical data.

"We found that temperature plays a critical role in driving the cycling of chemicals in marine micro-algae. It affects these reactions as much as nutrients and light, which was not known before," said Dr Mock.

"Under warmer temperatures, marine micro-algae do not seem to produce as many ribosomes as under lower temperatures. Ribosomes join up the building blocks of proteins in cells. They are rich in phosphorous and if they are being reduced, this will produce higher ratios of nitrogen compared to phosphorous, increasing the demand for nitrogen in the oceans.

"This will eventually lead to a greater prevalence of blue-green algae called cyanobacteria which fix atmospheric nitrogen," he added.

The research was funded by the Natural Environment Research Council (NERC), 454 Life Sciences (Roche), the Leverhulme Trust, the European Union (FP7), the German Research Foundation (DFG) and the Earth and Life Systems Alliance (ELSA).

'The impact of temperature on marine phytoplankton resource allocation and metabolism' by A Toseland, SJ Daines, JR Clark, A Kirkham, J Strauss, C Uhlig, TM Lenton, K Valentin, GA Pearson, V Moulton and T Mock is published in Nature Climate Change.

Lisa Horton | EurekAlert!
Further information:
http://www.uea.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>