Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change: Tropical species are most vulnerable to rising temperatures

09.07.2014

A new study published today in “Proceedings of the Royal Society B: Biological Sciences” by researchers of the LOEWE Biodiversity and Climate Research Centre and Goethe University shows that tropical species will be most at risk from rising temperatures as the discrepancy between physiological thermal limits and projected temperatures is highest in tropical regions.

In contrast, a large part of mammal and bird species in temperate zones will find ambient temperatures in 2080 within their tolerance ranges. However, indirect effects of rising temperatures may counteract opportunities given by species’ physiological tolerances in temperate zones.


The Northern Treeshrew is an indige-nous mammal in tropical Southeast Asia. The thermal tolerance of this species is only 7.5 degrees, which is quite narrow.

In responding to changing ambient conditions, species become extinct, adapt or move to a different, more suitable habitat. One of the largest studies of this kind was carried out by researchers from the German LOEWE Biodiversity and Climate Research Centre (BiK-F) and Goethe University. The study highlights the alternative idea that the species may also just be able to tolerate the ongoing changes.

The researchers selected nearly 460 mammal and bird species and analyzed their tolerated temperature ranges. These estimations were subsequently matched with data from geographical distributions and temperatures in these habitats currently and under projected climatic conditions in 2080. The analyzed species are a representative selection of physiological diversity within the global bird and mammal species.

Are species in temperate zones unmoved by climate change?
From a global perspective, 54% of the bird and 62% of the analyzed mammal species will experience temperatures above their tolerated threshold across 50% of their current distribution for a certain period of time. “However, we found significant regional differences. In 2080 the majority of the analyzed mammal and bird species living in the temperate zones will likely find suitable temperature conditions in a large part of their habitat. But they are not off the hook, because rising temperatures might have indirect effects. For instance, higher temperatures may improve conditions for pathogens or competing species and have negative impacts on the occurrence of food resources,” says Dr. Christian Hof, Biodiversity and Climate Research Centre (BiK-F).

Species-rich tropical regions are most vulnerable to rising temperatures
The share of species which will experience temperatures above their tolerated threshold increases from polar and temperate regions towards tropical regions, even though increases of temperature projected for temperate and polar regions exceed those in the tropics. “Bird and mammal species living in tropical regions tend to live closer to their upper temperature limits. Even small increases in ambient temperatures may therefore challenge their long-term survival,“ explains the lead author of the study, Imran Khaliq, a current PhD student at BiK-F. In addition, projections show decreasing precipitation in tropical regions. This worsens the perspective for tropical species as water availability is crucial for endotherm species (such as mammals and birds) to compensate thermal stress.

Birds adapt physiologically to ambient climate, mammals adapt by behavior
Projections of mammal responses to climate change may contain a substantial component of uncertainty as the data show a higher independence of physiologically-tolerated temperatures and climatic conditions in their habitats when compared to birds. This may be due to differing strategies in coping with extreme temperatures. While in birds, physiological adaptations appear to dominate their strategies to cope with extreme temperatures, mammals have developed behavioral strategies to cope with climatic extremes, e.g. creating preferred microclimates in burrows and dens.

Paper:
Khaliq, I., Hof, Ch. et al. Global variation in thermal tolerances and vulnerability of endotherms to climate change – Proceedings of the Royal Society B: Biological Sciences. DOI: 10.1098/rspb.2014.1097

For more information please contact:

Dr. Christian Hof
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. + 49 (0)69 7542 1804
christian.hof@senckenberg.de

or

Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838
sabine.wendler@senckenberg.de

Sabine Wendler | Senckenberg
Further information:
http://www.senckenberg.de

Further reports about: BiK-F Biodiversity Climate Senckenberg mammal species temperature temperatures tropical

More articles from Ecology, The Environment and Conservation:

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht From waste to resource – how can we turn garbage into gold?
27.04.2016 | DLR Projektträger

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>