Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change: Tropical species are most vulnerable to rising temperatures


A new study published today in “Proceedings of the Royal Society B: Biological Sciences” by researchers of the LOEWE Biodiversity and Climate Research Centre and Goethe University shows that tropical species will be most at risk from rising temperatures as the discrepancy between physiological thermal limits and projected temperatures is highest in tropical regions.

In contrast, a large part of mammal and bird species in temperate zones will find ambient temperatures in 2080 within their tolerance ranges. However, indirect effects of rising temperatures may counteract opportunities given by species’ physiological tolerances in temperate zones.

The Northern Treeshrew is an indige-nous mammal in tropical Southeast Asia. The thermal tolerance of this species is only 7.5 degrees, which is quite narrow.

In responding to changing ambient conditions, species become extinct, adapt or move to a different, more suitable habitat. One of the largest studies of this kind was carried out by researchers from the German LOEWE Biodiversity and Climate Research Centre (BiK-F) and Goethe University. The study highlights the alternative idea that the species may also just be able to tolerate the ongoing changes.

The researchers selected nearly 460 mammal and bird species and analyzed their tolerated temperature ranges. These estimations were subsequently matched with data from geographical distributions and temperatures in these habitats currently and under projected climatic conditions in 2080. The analyzed species are a representative selection of physiological diversity within the global bird and mammal species.

Are species in temperate zones unmoved by climate change?
From a global perspective, 54% of the bird and 62% of the analyzed mammal species will experience temperatures above their tolerated threshold across 50% of their current distribution for a certain period of time. “However, we found significant regional differences. In 2080 the majority of the analyzed mammal and bird species living in the temperate zones will likely find suitable temperature conditions in a large part of their habitat. But they are not off the hook, because rising temperatures might have indirect effects. For instance, higher temperatures may improve conditions for pathogens or competing species and have negative impacts on the occurrence of food resources,” says Dr. Christian Hof, Biodiversity and Climate Research Centre (BiK-F).

Species-rich tropical regions are most vulnerable to rising temperatures
The share of species which will experience temperatures above their tolerated threshold increases from polar and temperate regions towards tropical regions, even though increases of temperature projected for temperate and polar regions exceed those in the tropics. “Bird and mammal species living in tropical regions tend to live closer to their upper temperature limits. Even small increases in ambient temperatures may therefore challenge their long-term survival,“ explains the lead author of the study, Imran Khaliq, a current PhD student at BiK-F. In addition, projections show decreasing precipitation in tropical regions. This worsens the perspective for tropical species as water availability is crucial for endotherm species (such as mammals and birds) to compensate thermal stress.

Birds adapt physiologically to ambient climate, mammals adapt by behavior
Projections of mammal responses to climate change may contain a substantial component of uncertainty as the data show a higher independence of physiologically-tolerated temperatures and climatic conditions in their habitats when compared to birds. This may be due to differing strategies in coping with extreme temperatures. While in birds, physiological adaptations appear to dominate their strategies to cope with extreme temperatures, mammals have developed behavioral strategies to cope with climatic extremes, e.g. creating preferred microclimates in burrows and dens.

Khaliq, I., Hof, Ch. et al. Global variation in thermal tolerances and vulnerability of endotherms to climate change – Proceedings of the Royal Society B: Biological Sciences. DOI: 10.1098/rspb.2014.1097

For more information please contact:

Dr. Christian Hof
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. + 49 (0)69 7542 1804


Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838

Sabine Wendler | Senckenberg
Further information:

Further reports about: BiK-F Biodiversity Climate Senckenberg mammal species temperature temperatures tropical

More articles from Ecology, The Environment and Conservation:

nachricht El Niño Warming Causes Significant Coral Damage in Central Pacific
01.12.2015 | Georgia Institute of Technology

nachricht Waters are more polluted than tests say: Standard toxicity analyses come up short
30.11.2015 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>