Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change threatens one in five plant species

Climate change alters growing conditions in many regions of the world. How global warming could affect Germany’s flora researchers have now simulated using computer models.

One in five of Germany's plant species could lose parts of its current range, a study by scientists at the Helmholtz Centre for Environmental Research (UFZ), the Potsdam Institute for Climate Impact Research (PIK) and the French Laboratoire d'Ecologie Alpine reveals.

Species distributions will be rearranged as a result of climate change; this could have a dramatic impact particularly on the vegetation in south-western and eastern Germany. The researchers have modelled and recorded how the ranges of a total of 845 European plant species will shift under three different future scenarios. Even moderate climate change and limited land use changes could have an adverse impact on flora, the researchers write in the current edition of Biology Letters. The research shows how important it is to limit global warming to two degrees Celsius above the pre-industrial level in order to preserve broad biodiversity in plant species.

Sven Pompe and his colleagues from UFZ evaluated the potential impact of climate change on the distribution of 845 European plant species, 550 of which are currently found in Germany. The research team, which included Franz Badeck from PIK, used climate and land use scenarios up to 2080 based on possible temperature increases of 2.2, 2.9 or 3.8 degrees Celsius. The impacts of climate change will result in local losses of flora.

The reduction in the ranges of plants is a general trend, although some central and southern European species move in which were not previously recorded in Germany. The impacts will vary locally, with the greatest reduction in species richness likely to take place in north-eastern and south-western Germany. The effects in the simulations become greater as the temperature increases. With moderate warming of about 2.2 degrees Celsius, about seven percent of species will lose more than two-thirds of their current ranges.

This increases to eleven percent at a warming of 2.9 degrees Celsius and twenty percent at 3.8 degrees Celsius. The fact that the extent of change increases disproportionately to the projected increase in temperature argues in favour of the European Union's stabilisation target of two degrees Celsius in order to protect biodiversity. Saarland, Rhineland Palatinate and Hesse and the lowland plains of Brandenburg, Saxony-Anhalt and Saxony could suffer particularly high species losses.

In contrast, the researchers expect the number of species in the low mountain ranges of Baden-Württemberg, Bavaria, Thuringia and Saxony to increase slightly, with some plants moving in. However, for this to happen these species would actually have to reach these areas: climate change could take place too quickly for most plant species to adapt or migrate in line with the shifts in ranges - polewards or to higher altitudes.

"Many plant species could lose their niches in habitats such as mountains or moors," Sven Pompe from UFZ explains. Migrating species from southern Europe could not compensate for these losses in the models. The marsh marigold (Caltha palustris), for example, is one of the losers to climate change. The changes in the environmental conditions in the scenarios will result in this species disappearing locally from the low-lying areas of Brandenburg, Saxony-Anhalt and Saxony. In contrast, the common walnut (Juglans regia), originally introduced north of the Alps by the Romans, would find more areas with suitable conditions and could extend into eastern Germany.

The third party funded project "Modellierung der Auswirkungen des Klimawandels auf die Flora" [Modelling of the impacts of climate change on the flora (of Germany)] was funded by the Federal Agency for Nature Conservation (BfN) with funds from the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety and as part of the European Union’s ALARM, MACIS and ECOCHANGE research projects. Impacts of climate change on biodiversity are being researched by UFZ and PIK in the joint projects "Protected Areas in Germany under Global Change - Risks and Policy Options" and ALARM.

Sven Pompe, Jan Hanspach, Franz Badeck, Stefan Klotz, Wilfried Thuiller, Ingolf
Kühn (2008):
Climate and land use change impacts on plant distributions in Germany.
Biology Letters
DOI: 10.1098/rsbl.2008.0231

Tilo Arnhold | alfa
Further information:

Further reports about: Climate change global warming plant species

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>