Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change threatens one in five plant species

13.08.2008
Climate change alters growing conditions in many regions of the world. How global warming could affect Germany’s flora researchers have now simulated using computer models.

One in five of Germany's plant species could lose parts of its current range, a study by scientists at the Helmholtz Centre for Environmental Research (UFZ), the Potsdam Institute for Climate Impact Research (PIK) and the French Laboratoire d'Ecologie Alpine reveals.

Species distributions will be rearranged as a result of climate change; this could have a dramatic impact particularly on the vegetation in south-western and eastern Germany. The researchers have modelled and recorded how the ranges of a total of 845 European plant species will shift under three different future scenarios. Even moderate climate change and limited land use changes could have an adverse impact on flora, the researchers write in the current edition of Biology Letters. The research shows how important it is to limit global warming to two degrees Celsius above the pre-industrial level in order to preserve broad biodiversity in plant species.

Sven Pompe and his colleagues from UFZ evaluated the potential impact of climate change on the distribution of 845 European plant species, 550 of which are currently found in Germany. The research team, which included Franz Badeck from PIK, used climate and land use scenarios up to 2080 based on possible temperature increases of 2.2, 2.9 or 3.8 degrees Celsius. The impacts of climate change will result in local losses of flora.

The reduction in the ranges of plants is a general trend, although some central and southern European species move in which were not previously recorded in Germany. The impacts will vary locally, with the greatest reduction in species richness likely to take place in north-eastern and south-western Germany. The effects in the simulations become greater as the temperature increases. With moderate warming of about 2.2 degrees Celsius, about seven percent of species will lose more than two-thirds of their current ranges.

This increases to eleven percent at a warming of 2.9 degrees Celsius and twenty percent at 3.8 degrees Celsius. The fact that the extent of change increases disproportionately to the projected increase in temperature argues in favour of the European Union's stabilisation target of two degrees Celsius in order to protect biodiversity. Saarland, Rhineland Palatinate and Hesse and the lowland plains of Brandenburg, Saxony-Anhalt and Saxony could suffer particularly high species losses.

In contrast, the researchers expect the number of species in the low mountain ranges of Baden-Württemberg, Bavaria, Thuringia and Saxony to increase slightly, with some plants moving in. However, for this to happen these species would actually have to reach these areas: climate change could take place too quickly for most plant species to adapt or migrate in line with the shifts in ranges - polewards or to higher altitudes.

"Many plant species could lose their niches in habitats such as mountains or moors," Sven Pompe from UFZ explains. Migrating species from southern Europe could not compensate for these losses in the models. The marsh marigold (Caltha palustris), for example, is one of the losers to climate change. The changes in the environmental conditions in the scenarios will result in this species disappearing locally from the low-lying areas of Brandenburg, Saxony-Anhalt and Saxony. In contrast, the common walnut (Juglans regia), originally introduced north of the Alps by the Romans, would find more areas with suitable conditions and could extend into eastern Germany.

The third party funded project "Modellierung der Auswirkungen des Klimawandels auf die Flora" [Modelling of the impacts of climate change on the flora (of Germany)] was funded by the Federal Agency for Nature Conservation (BfN) with funds from the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety and as part of the European Union’s ALARM, MACIS and ECOCHANGE research projects. Impacts of climate change on biodiversity are being researched by UFZ and PIK in the joint projects "Protected Areas in Germany under Global Change - Risks and Policy Options" and ALARM.

Publication:
Sven Pompe, Jan Hanspach, Franz Badeck, Stefan Klotz, Wilfried Thuiller, Ingolf
Kühn (2008):
Climate and land use change impacts on plant distributions in Germany.
Biology Letters
DOI: 10.1098/rsbl.2008.0231

Tilo Arnhold | alfa
Further information:
http://www.ufz.de
http://www.ufz.de/index.php?en=17101

Further reports about: Climate change global warming plant species

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>