Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change and mountain building led to mammal diversity patterns

Travel from the tropics to the poles, and you'll notice that the diversity of mammals declines with distance from the equator. Move from lowland to mountains, and you'll see diversity increase as the landscape becomes more varied. Ecologists have proposed various explanations for these well-known "biodiversity gradients," invoking ecological, evolutionary and historical processes.

New findings by University of Michigan researchers John A. Finarelli and Catherine Badgley suggest that the elevational patterns of diversity we see today have appeared, disappeared and reappeared over Earth's history and that these patterns arise from interactions between climate change and mountain building.

The results, published online in the journal Proceedings of the Royal Society B, also have implications for conservation efforts in the face of modern-day global warming, said Finarelli, a visiting assistant professor in the Department of Geological Sciences.

In their study, focused on the Miocene Epoch, which began around 23 million years ago and ended about 5 million years ago, Finarelli and Badgley evaluated diversity for more than 400 rodent species from adjacent regions that differed in geologic history and topography. The geologically "active region," which extends from the Front Range of the Rocky Mountains to the Pacific coast, has experienced several episodes of mountain-building and volcanic activity, and as a result has a topographically complex landscape. In contrast, the relatively flat Great Plains, has been more stable geologically.

The prevailing notion has been that diversity is greater in mountainous regions than in lowlands simply because the topography is more complex. As mountains rise up, new habitats are created, and areas that once were continuous become fragmented. Such changes offer opportunities for new species to arise, increasing diversity.

But climate also enters in, the new study shows. During the Miocene, long-term, global cooling was interrupted by warm intervals. In the active region, diversity increased during a warm interval from 17 to 14 million years ago that coincided with intensified mountain building and volcanic activity, the analysis revealed. During subsequent cooling, diversity declined in the mountains and increased on the plains.

"This pattern suggests that the elevational diversity gradient arises during historical episodes associated with global warming and mountain building," said Badgley, an assistant professor in the Department of Ecology and Evolutionary Biology and a research scientist in the Museum of Paleontology and the Department of Geological Sciences. "This gradient is not a long-term feature of North American biodiversity."

Although the research focused on ancient ecosystems, the findings have implications for modern times, Finarelli said. "Based on our finding that more complex regions are more sensitive to climate change, threatened areas in mountainous regions should be a particular conservation concern, with respect to human-mediated climate change."

The work also highlights the importance of studies that merge the disciplines of paleontology and biogeography, Finarelli said. "By marrying the two subjects, we can gain a better insight into the ecological and evolutionary processes shaping the world around us."

Nancy Ross-Flanigan | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>