Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change allows invasive weed to outcompete local species

01.06.2011
Yellow starthistle already causes millions of dollars in damage to pastures in western states each year, and as climate changes, land managers can expect the problem with that weed and others to escalate.

When exposed to increased carbon dioxide, precipitation, nitrogen and temperature – all expected results of climate change – yellow starthistle in some cases grew to six times its normal size while the other grassland species remained relatively unchanged, according to a Purdue University study published in the early online edition of the journal Ecological Applications. The plants were compared with those grown under ambient conditions.

"The rest of the grassland didn't respond much to changes in conditions except nitrogen," said Jeff Dukes, a Purdue associate professor of forestry and natural resources and the study's lead author. "We're likely to see these carbon dioxide concentrations in the second half of this century. Our results suggest that yellow starthistle will be a very happy camper in the coming decades."

The study is one of the first comparing the growth of invasive species versus their local competitors under future climate scenarios. Dukes believes the results indicate problems land managers and crop growers could see in the coming decades, and not just with yellow starthistle.

"Plants are going to respond in a number of ways to climate change. Sometimes, the species we depend on will benefit, but other times, it will be the weedy, problematic species that benefit most, and there can be economic and ecological damages associated that people should be aware of," Dukes said. "These problems with yellow starthistle aren't going to go away on their own. If anything it's going to become more of a problem than it is now."

Yellow starthistle is a significant weed in the West, especially in California, where it has a longer growing season than native plants and depletes ground moisture, affecting water supplies.

"It reduces the quality of the area for animal forage, is toxic to horses and when it forms spines, cattle don't want to eat it," Dukes said. "Many consider yellow starthistle to be the worst grassland weed in the West."

The decreased pasture production, lost water, and control costs associated with yellow starthistle cause economic impacts in many western states. Experts suggest that in Idaho alone, the weed may cause more than $12 million a year in economic damage and that yellow starthistle reduces pasture values by 6 percent to 7 percent across the state of California.

Dukes said all plants increased in size as expected when exposed to more nitrogen. But yellow starthistle was especially responsive to increased carbon dioxide.

That might be in part because the weed can gain access to more soil resources, Dukes said. Grassland plants' stomata, small porelike openings on the leaves, don't have to be open as wide to take in carbon dioxide when there is a larger concentration in the air. Those smaller stomata allow less water to escape, and the extra water in the soil could favor yellow starthistle. The added carbon dioxide also changed the mix of species competing with the weed and may have allowed it to grow a more effective root system.

"It was an impressive increase in growth," Dukes said. "It was one of the largest responses to elevated carbon dioxide ever observed."

Biological control species introduced to control yellow starthistle have not been effective enough, and Dukes said it is becoming urgent that better controls be developed to address invasive species that could cause significant damage to pasture, cropland and wildlands.

The National Science Foundation and the David and Lucile Packard Foundation funded the research, which was carried out in collaboration with researchers at the University of Massachusetts Boston, Stanford University and the Carnegie Institution for Science.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Jeff Dukes, 765-496-1446, jsdukes@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>