Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change allows invasive weed to outcompete local species

01.06.2011
Yellow starthistle already causes millions of dollars in damage to pastures in western states each year, and as climate changes, land managers can expect the problem with that weed and others to escalate.

When exposed to increased carbon dioxide, precipitation, nitrogen and temperature – all expected results of climate change – yellow starthistle in some cases grew to six times its normal size while the other grassland species remained relatively unchanged, according to a Purdue University study published in the early online edition of the journal Ecological Applications. The plants were compared with those grown under ambient conditions.

"The rest of the grassland didn't respond much to changes in conditions except nitrogen," said Jeff Dukes, a Purdue associate professor of forestry and natural resources and the study's lead author. "We're likely to see these carbon dioxide concentrations in the second half of this century. Our results suggest that yellow starthistle will be a very happy camper in the coming decades."

The study is one of the first comparing the growth of invasive species versus their local competitors under future climate scenarios. Dukes believes the results indicate problems land managers and crop growers could see in the coming decades, and not just with yellow starthistle.

"Plants are going to respond in a number of ways to climate change. Sometimes, the species we depend on will benefit, but other times, it will be the weedy, problematic species that benefit most, and there can be economic and ecological damages associated that people should be aware of," Dukes said. "These problems with yellow starthistle aren't going to go away on their own. If anything it's going to become more of a problem than it is now."

Yellow starthistle is a significant weed in the West, especially in California, where it has a longer growing season than native plants and depletes ground moisture, affecting water supplies.

"It reduces the quality of the area for animal forage, is toxic to horses and when it forms spines, cattle don't want to eat it," Dukes said. "Many consider yellow starthistle to be the worst grassland weed in the West."

The decreased pasture production, lost water, and control costs associated with yellow starthistle cause economic impacts in many western states. Experts suggest that in Idaho alone, the weed may cause more than $12 million a year in economic damage and that yellow starthistle reduces pasture values by 6 percent to 7 percent across the state of California.

Dukes said all plants increased in size as expected when exposed to more nitrogen. But yellow starthistle was especially responsive to increased carbon dioxide.

That might be in part because the weed can gain access to more soil resources, Dukes said. Grassland plants' stomata, small porelike openings on the leaves, don't have to be open as wide to take in carbon dioxide when there is a larger concentration in the air. Those smaller stomata allow less water to escape, and the extra water in the soil could favor yellow starthistle. The added carbon dioxide also changed the mix of species competing with the weed and may have allowed it to grow a more effective root system.

"It was an impressive increase in growth," Dukes said. "It was one of the largest responses to elevated carbon dioxide ever observed."

Biological control species introduced to control yellow starthistle have not been effective enough, and Dukes said it is becoming urgent that better controls be developed to address invasive species that could cause significant damage to pasture, cropland and wildlands.

The National Science Foundation and the David and Lucile Packard Foundation funded the research, which was carried out in collaboration with researchers at the University of Massachusetts Boston, Stanford University and the Carnegie Institution for Science.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Jeff Dukes, 765-496-1446, jsdukes@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dead trees are alive with fungi
10.01.2018 | Helmholtz Centre for Environmental Research (UFZ)

nachricht Management of mountain meadows influences resilience to climate extremes
10.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>