Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate-change-induced wildfires may alter Yellowstone forests

26.07.2011
Climate change in the Greater Yellowstone Ecosystem will increase the frequency of wildfires and alter the composition of the forests by 2050, according to a team of ecologists who modeled the effects of higher temperatures on fire occurrence.

"We are following the long-term effects of fire in the Yellowstone area and encountering some lessons and surprises that challenge the way we think about fire in the area," said Erica A. H. Smithwick, assistant professor of geography and ecology, Penn State, and principle investigator on the project. "Yellowstone National Park is the first national park in the world and is now a wonderful natural laboratory for studying natural processes."

The Greater Yellowstone Ecosystem is centered around Yellowstone National Park but encompasses about 20 million acres in Wyoming, Montana and Idaho and includes Grand Teton National Park, many national forests and a small amount of private land. The forests in this area are predominantly lodgepole pine but also include Douglas fir, Ponderosa pine, whitebark pine, spruce-fir and aspen.

Using historic records of fires in the Yellowstone area and coupling that information with a number of existing climate models, the researchers report today (July 25) in the Proceedings of the National Academy of Sciences that the climate-linked fire system is a tipping element that may change the flora, fauna and ecosystem quality in this landscape and could point to similar changes in other subalpine or boreal forests.

Historically, fires occur in the lodgepole forests in the Yellowstone area about once every 100 to 300 years. These fires are 'stand replacing fires' because the entire forest is destroyed by fire and then regrows. Unlike areas of the southwest where understory brush and organic material increases the chance of major fires, fire in this area is mostly dependent on temperature, relative humidity and drought conditions.

Unlike other coniferous trees, lodgepole pine create pinecones very slowly and the cones stay on the trees. On some trees, the cones require the heat of a fire to open and release their seeds.

"The vegetation really needs about 90 years to fully recover," said Smithwick, "although there would probably be some cones at 15 years and more at 30 and 60 years. We need to know more about the forest's capacity to recover rapidly under frequent fire conditions."

Historically, large fire years were associated with moderate -- 2 degrees Fahrenheit -- changes in temperature, but changes in future temperatures are expected to exceed these values on a regular basis. The rate of fires is already increasing in the western U.S. Using the historical fire-climate relationships between 1972 and 1999 as a guide, the three global climate models provided consistent results through the year 2099.

The researchers found that "warmer-than-average temperatures were a necessary but not sufficient condition for predicting extreme fire years" but that moisture deficit and summer precipitation were also important. Although the variability of day-to-day winds is not included in the models, they too would play a part in fire frequency and size.

"What surprised us about our results was the speed and scale of the projected changes in fire in Greater Yellowstone," said Anthony Westerling, professor of environmental engineering and geography, University of California, Merced. "We expected fire to increase with increased temperatures, but we did not expect it to increase so much or so quickly. We were also surprised by how consistent the changes were across different climate projections."

In the simulations, years with no major fires, which are common historically, became rare approaching 2050 and almost non-existent between 2050 and 2099. Between 2005 and 2034 the fire interval drops below 30 years in parts of the landscape, and by 2099 climatic condition are such that fire is the norm.

Of course with a more frequent fire regime, there could be insufficient fuel for fires to persist.

"In these model we don't consider what the vegetation will do under these changing regimes," said Smithwick. "The forest has been stable for thousands of years, but it looks like it will face changes by 2050."

These changes would also alter the fire regime because some areas might become more permanent grasslands or forests of other trees, such as Ponderosa pine, might emerge. Long before the fire regimebecomes more frequent, the vegetation and possibly the animals in the area may have to adapt to severe fire events.

Smithwick is not suggesting that fire policy in Yellowstone should shift, and she is certain that the park with its geysers and mud pots will still remain, but climate change will bring changes to the forests and perhaps to the human and animal uses of the park.

"The lodgepole pine has surprised us over and over, so maybe it will be resilient enough to persist," she said.

Also participating in this research were Monica Turner, Eugene P. Odum Professor of ecology, University of Wisconsin; Madison, Michael G. Ryan, research ecologist, U.S. Forest Service; and William H. Romme, professor emeritus, Colorado State University.

The Joint Fire Science Program, U.S. Forest Service Southern Research Station Joint Venture Agreement and the National Oceanic and Atmospheric Administration supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Forest Service Ponderosa Yellowstone boreal forest ecosystem lodgepole pine

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>