Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate-change-induced wildfires may alter Yellowstone forests

Climate change in the Greater Yellowstone Ecosystem will increase the frequency of wildfires and alter the composition of the forests by 2050, according to a team of ecologists who modeled the effects of higher temperatures on fire occurrence.

"We are following the long-term effects of fire in the Yellowstone area and encountering some lessons and surprises that challenge the way we think about fire in the area," said Erica A. H. Smithwick, assistant professor of geography and ecology, Penn State, and principle investigator on the project. "Yellowstone National Park is the first national park in the world and is now a wonderful natural laboratory for studying natural processes."

The Greater Yellowstone Ecosystem is centered around Yellowstone National Park but encompasses about 20 million acres in Wyoming, Montana and Idaho and includes Grand Teton National Park, many national forests and a small amount of private land. The forests in this area are predominantly lodgepole pine but also include Douglas fir, Ponderosa pine, whitebark pine, spruce-fir and aspen.

Using historic records of fires in the Yellowstone area and coupling that information with a number of existing climate models, the researchers report today (July 25) in the Proceedings of the National Academy of Sciences that the climate-linked fire system is a tipping element that may change the flora, fauna and ecosystem quality in this landscape and could point to similar changes in other subalpine or boreal forests.

Historically, fires occur in the lodgepole forests in the Yellowstone area about once every 100 to 300 years. These fires are 'stand replacing fires' because the entire forest is destroyed by fire and then regrows. Unlike areas of the southwest where understory brush and organic material increases the chance of major fires, fire in this area is mostly dependent on temperature, relative humidity and drought conditions.

Unlike other coniferous trees, lodgepole pine create pinecones very slowly and the cones stay on the trees. On some trees, the cones require the heat of a fire to open and release their seeds.

"The vegetation really needs about 90 years to fully recover," said Smithwick, "although there would probably be some cones at 15 years and more at 30 and 60 years. We need to know more about the forest's capacity to recover rapidly under frequent fire conditions."

Historically, large fire years were associated with moderate -- 2 degrees Fahrenheit -- changes in temperature, but changes in future temperatures are expected to exceed these values on a regular basis. The rate of fires is already increasing in the western U.S. Using the historical fire-climate relationships between 1972 and 1999 as a guide, the three global climate models provided consistent results through the year 2099.

The researchers found that "warmer-than-average temperatures were a necessary but not sufficient condition for predicting extreme fire years" but that moisture deficit and summer precipitation were also important. Although the variability of day-to-day winds is not included in the models, they too would play a part in fire frequency and size.

"What surprised us about our results was the speed and scale of the projected changes in fire in Greater Yellowstone," said Anthony Westerling, professor of environmental engineering and geography, University of California, Merced. "We expected fire to increase with increased temperatures, but we did not expect it to increase so much or so quickly. We were also surprised by how consistent the changes were across different climate projections."

In the simulations, years with no major fires, which are common historically, became rare approaching 2050 and almost non-existent between 2050 and 2099. Between 2005 and 2034 the fire interval drops below 30 years in parts of the landscape, and by 2099 climatic condition are such that fire is the norm.

Of course with a more frequent fire regime, there could be insufficient fuel for fires to persist.

"In these model we don't consider what the vegetation will do under these changing regimes," said Smithwick. "The forest has been stable for thousands of years, but it looks like it will face changes by 2050."

These changes would also alter the fire regime because some areas might become more permanent grasslands or forests of other trees, such as Ponderosa pine, might emerge. Long before the fire regimebecomes more frequent, the vegetation and possibly the animals in the area may have to adapt to severe fire events.

Smithwick is not suggesting that fire policy in Yellowstone should shift, and she is certain that the park with its geysers and mud pots will still remain, but climate change will bring changes to the forests and perhaps to the human and animal uses of the park.

"The lodgepole pine has surprised us over and over, so maybe it will be resilient enough to persist," she said.

Also participating in this research were Monica Turner, Eugene P. Odum Professor of ecology, University of Wisconsin; Madison, Michael G. Ryan, research ecologist, U.S. Forest Service; and William H. Romme, professor emeritus, Colorado State University.

The Joint Fire Science Program, U.S. Forest Service Southern Research Station Joint Venture Agreement and the National Oceanic and Atmospheric Administration supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:

Further reports about: Forest Service Ponderosa Yellowstone boreal forest ecosystem lodgepole pine

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>