Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change, increasing temperatures alter bird migration patterns

24.02.2012
Birds in eastern North America are picking up the pace along their yearly migratory paths.

The reason, according to University of North Carolina at Chapel Hill researchers, is rising temperatures due to climate change.

Using migration information collected in eBird, a citizen science program database containing 10 years' worth of observations from amateur birdwatchers, assistant professor of biology Allen Hurlbert, Ph.D., and his team in the UNC College of Arts and Sciences analyzed when 18 different species of birds arrived at various points across their migration journeys. Since 2002, eBird has collected more than 48 million bird observations from roughly 35,000 contributors.

The study results were published in the journal PLoS ONE on Wednesday (Feb. 22).

Pushing migration earlier in the year could negatively affect birds over the long term, Hurlbert said.

"Timing of bird migration is something critical for the overall health of bird species," he said. "They have to time it right so they can balance arriving on breeding grounds after there's no longer a risk of severe winter conditions. If they get it wrong, they may die or may not produce as many young. A change in migration could begin to contribute to population decline, putting many species at risk for extinction."

To minimize these threats, Hurlbert said he hoped the findings would be used to increase awareness around bird conservation. The outcomes also could help scientists identify which parts of the eastern United States will experience the greatest migration shifts, as well as which species face the largest dangers because they will be least likely to adapt successfully to climate change.

Although eBird only contains a decade of amateur-submitted data, versus several decades of data compiled by select bird observatories, the information it contains provides greater geographic coverage. Hurlbert's team focused on bird species that occur over the entire breadth of the eastern U.S. By reviewing the recorded temperatures and the exact dates on which bird watchers first noticed certain species in their areas, the researchers determined how closely bird migration tracks year-to-year variation in temperature.

On average, each species reached various stopping points 0.8 days earlier per degree Celsius of temperature increase. Some species' schedules accelerated by as much as three to six days for each rising degree. To date, the Northeast has experienced more relative warming than the Southeast.

According to the review, Hurlbert said, the speed at which a species migrates is the biggest influence on how strongly it responds to increasing temperatures. Slow migrators, such as the red-eyed vireo or the great crested flycatcher, were the most adaptable to changes. Additionally, the length of the migration path affects how quickly birds move from one location to another.

"It makes sense that if you take your time to move north, you're sort of checking out the surroundings around you," he said. "If the conditions seem too cold, you can decide there's no point in moving on that day. Species that tended to advance quickly, as well as those migrating from greater distances, such as Central or South America, were less able to adapt to temperature changes."

However, being a slow traveler does not free a species from all climate change-induced migration challenges. Because they stay in one spot longer, such birds have heavier habitat and food requirements, making them more dependent upon the resources that are available along their paths. That reliance could become a greater problem if climate projections for the next 50 years to 75 years hold true, Hurlbert said. Climatologists predict the Northeast will continue to warm at a faster pace than the Southeast, potentially forcing slow migrators to move even slower and put greater strain on their migratory routes.

"There's a lot of concern in the scientific community about climate change and how it will affect living things," he said. "This is a really useful data set that can likely address these anxieties around birds."

The study's co-author was Zhongfei Liang, a former undergraduate student who helped Hurlbert analyze the data. The paper's title is "Spatiotemporal Variation in Avian Migration Phenology: Citizen Science Reveals Effects of Climate Change."

Study link: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0031662

Media note: Hurlbert can be reached at (919) 843-9930 or hurlbert@bio.unc.edu

patric lane | EurekAlert!
Further information:
http://www.unc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>