Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Alters Species Distributions

06.08.2008
Changes in climate can produce physical changes in the Earth and its atmosphere, but can also can wreak havoc in more subtle ways, such as the loss of habitat for plant and animal species. At the Ecological Society of America (ESA) 93rd Annual Meeting, climate change scientists will discuss how temperature-induced habitat loss can spell disaster for many living things.

Scientists have long pointed to physical changes in the Earth and its atmosphere, such as melting polar ice caps, sea level rise and violent storms, as indicators of global climate change. But changes in climate can wreak havoc in more subtle ways, such as the loss of habitat for plant and animal species. In a series of talks at the Ecological Society of America (ESA) 93rd Annual Meeting, climate change scientists will discuss how temperature-induced habitat loss can spell disaster for many living things.

Climate models project that rising temperatures over time can lead to an increase in dry, desert-like conditions, which will affect not only the survivorship of particular species, but also the natural resources they have adapted to use in their natural environment. Species are thus forced to move elsewhere to find places to live and food to eat.

“Impacts on individual species indicate wider changes at the biome level that will potentially change conditions for many plant and animal species, in addition to ecosystem services to humans,” says Patrick Gonzalez, a researcher at The Nature Conservancy and a member of the Intergovernmental Panel on Climate Change (IPCC).

One species whose habitat may be in danger is the Canada lynx, which is listed as threatened in the United States. The feline’s main prey, the snowshoe hare, lives in deep snow cover in boreal forest. Because they rely so heavily on hares for food, lynx are adapted to live in areas with snow cover at least four months out of the year. The cats are so specialized to life on snow that their paws are much wider than is required to support their weight; the large paws help them stalk hares over deep snow without falling in.

Gonzalez, who has worked with USDA Forest Service scientists to analyze lynx habitat, projects that a temperature increase of 2.5 to 4 degrees Celsius in the coming century across the U.S. and Canada—the range of warming under the scenarios reported by the IPCC—may diminish snow cover suitable for lynx by 10 to 20 percent and reduce boreal forest cover by half in the contiguous U.S. Together, these changes could shift lynx habitat northward and decrease the area of habitat in the lower 48 states by two-thirds. This potentially extensive loss of habitat signals serious changes in boreal and alpine ecosystems, says Gonzalez.

Climate change can result in animals and plants migrating northward to escape the heat, but in many cases suitable habitat becomes scarce or unavailable farther away from the species’ natural range. The Propertius duskywing butterfly lives throughout the West Coast of the U.S., and during its caterpillar stage is specialized to live on oak trees. Shannon Pelini, a graduate student at the University of Notre Dame, conducted experiments revealing that warmer temperatures increased the survivorship and body size of caterpillars in its most northern habitats. A lack of oak trees in more northern climes, however, would preclude them from moving further north. The range shift of oak trees will happen much slower than the shift for the butterflies, leading to a contracted range, says Pelini.

As if the direct effects of rising temperatures weren’t enough, climate change also has impacts that could make climate patterns less consistent over time. Michael Notaro, a scientist at the University of Wisconsin-Madison, used climate data from the past century to model vegetation changes over time. He found that large variability in climate causes an increasing number and intensity of fires and droughts, as well as extreme weather events that could kill long-lived trees and allow short-lived grasses to colonize the leftover space. His models predict that year-to-year variability in precipitation and temperature reduces the Earth's total vegetation cover, expanding its relative grass cover and diminishing its relative tree cover.

“The central U.S. is characterized by an ecotone that’s the intersection of forest in the East and grassland in the West,” says Notaro. “The border between these ecosystems is largely determined by climate variability and it is likely that climate change will shift the location of this and other ecological boundaries worldwide.”

Gonzalez agrees that the research results presented at the ESA Annual Meeting indicate serious vulnerabilities of both individual species and global biomes to climate change.

“Climate change threatens to alter extensive areas of habitat,” says Gonzalez. “Lynx is one species that is vulnerable, but the potential impacts of climate change on entire ecosystems are even more alarming.”

The researchers will present their results in the following oral sessions:

Shannon Pelini and Patrick Gonzalez - Climate Change: Range and Phenology
Monday, Aug. 4, Midwest Airlines Center 103C, 1:30-5 p.m.
Michael Notaro - Climate Change and Plants I
Tuesday, Aug. 5, Midwest Airlines Center 103AB, 8-11:30 a.m.
For more information about this session and other ESA Annual Meeting activities, visit http://www.esa.org/milwaukee. The theme of the meeting is “Enhancing Ecological Thought by Linking Research and Education.” More than 3,500 scientists are expected to attend.

Christine Buckley | Newswise Science News
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>