Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change is altering mountain vegetation at large scale

09.01.2012
Climate change is having a more profound effect on alpine vegetation than at first anticipated, according to a study carried out by an international group of researchers and published in Nature Climate Change. The first ever pan-European study of changing mountain vegetation has found that some alpine meadows could disappear within the next few decades.

Led by researchers from the Austrian Academy of Sciences and the University of Vienna, biologists from 13 different countries in Europe analysed 867 vegetation samples from 60 different summits sited in all major European mountain systems, first in 2001 and then again just seven years later in 2008. They found strong indications that, at a continental scale, cold-loving plants traditionally found in alpine regions are being pushed out of many habitats by warm-loving plants.


This alpine species (Nevadensia purpurea) could disappear from some European mountains in the next few decades. Credit: Harald Pauli


All 32 authors involved in the study used the same sampling procedures enabling pan-continental comparisons to be made for the first time, here at the Austrian Hochschwab mountains. Credit: Harald Pauli

"We expected to find a greater number of warm-loving plants at higher altitudes, but we did not expect to find such a significant change in such a short space of time," said Michael Gottfried from the Global Observation Research Initiative in Alpine Environments (GLORIA) programme which coordinated the study. "Many cold-loving species are literally running out of mountain. In some of the lower mountains in Europe, we could see alpine meadows disappearing and dwarf shrubs taking over within the next few decades," he warns.

The study, which is the largest and most comprehensive of its kind in the world, confirmed that there is a direct link between growing summer temperature and the shift in alpine plant composition. "While regional studies have previously made this link, this is the first time it has been shown on a continental scale," said Gottfried. This phenomenon, which the GLORIA researchers have called thermophilization, has now been measured and quantified for the first time and is expressed by the researchers as a thermophilization indicator (D). All 32 of the study's authors used exactly the same sampling procedures and returned to the same sampling sites, thus enabling a pan-continental comparison to be made for the first time. "We hope that our thermophilization indicator could be used by other research groups around the world and enable a global comparison," said Harald Pauli, GLORIA's network coordinator.
The research also showed that the effect is independent of altitude (it is happening at the tree line as well as on high mountain peaks) and latitude (the effect is seen in northern countries such as Scotland as well as southern mountain ranges such those on Crete).

"Our work shows that climate change affects even the outer edges of the biosphere," said Georg Grabherr, chair of the GLORIA programme. "The thermophilisation of alpine life zones can never be controlled directly. Adaptation strategies are not an option and we must concentrate on mitigating climate change in order to preserve our biogenetic treasure."

About GLORIA

The GLORIA programme (Global Observation Research Initiative in Alpine Environments) is a network of more than 100 research teams distributed over six continents whose aim it is to monitor all alpine regions across the globe. Launched in 2001, it has implemented a long-term and standardised approach to the observation of alpine vegetation and its response to climate change. The GLORIA researchers will be returning to the same European sampling sites in 2015 to continue monitoring the effects of climate change on alpine vegetation.

Further details: http://www.gloria.ac.at/

Publication

Continent-wide response of mountain vegetation to climate change. In: Nature Climate Change, 8. Jänner 2012 (Online ahead of print) DOI: 10.1038/NCLIMATE1329

Michael Gottfried | EurekAlert!
Further information:
http://www.univie.ac.at

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>