Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Will Alter Risks of Wildfire Worldwide, Some Shifts Rapid, Extensive

13.06.2012
A Texas Tech University climate scientist said climate change is widely expected to disrupt future fire patterns around the world, with some regions, such as the western United States, seeing more frequent fires within the next 30 years.

The study will publish Tuesday, (June 12) in Ecosphere, an open-access, peer-reviewed journal of the Ecological Society of America. Researchers used 16 different climate change models to generate one of the most comprehensive projections to date of how climate change might affect global fire patterns.

Katharine Hayhoe, director of the Climate Science Center at Texas Tech and co-author of the study, was part of a team led by researchers at the University of California, Berkeley, in collaboration with an international team of scientists.

“Most of the previous wildfire projection studies focused on specific regions of the world, or relied upon only a handful of climate models,” said Hayhoe, also an associate professor. “Our study is unique in that we build a forecast for fire based upon consistent projections across 16 different climate models combined with satellite data, which gives a global perspective on recent fire patterns and their relationship to climate.”

By the end of the century, almost all of North America and most of Europe is projected to see a jump in the frequency of wildfires, primarily because of increasing temperature trends. At the same time, fire activity could actually decrease around equatorial regions because of increased rainfall, particularly among the tropical rainforests.

“In the long run, we found what most fear — increasing fire activity across large parts of the planet,” said lead author Max Moritz, a fire specialist in UC Cooperative Extension. “But the speed and extent to which some of these changes may happen is surprising. These abrupt changes in fire patterns not only affect people’s livelihoods, but also they add stress to native plants and animals that are already struggling to adapt to habitat loss.”

The projections emphasize how important it is for experts in conservation and urban development to include fire in long-term planning and risk analysis, Moritz said, who is based at UC Berkeley’s College of Natural Resources.

UC Berkeley researchers worked with Hayhoe to combine more than a decade of satellite-based fire records with historical climate observations and model simulations of future change. The authors documented gradients between fire-prone and fire-free areas of Earth, and quantified the environmental factors responsible for these patterns. They then used these relationships to simulate how future climate change would drive future fire activity through the coming century as projected by a range of global climate models.

The fire models in this study are based on climate averages that include mean annual precipitation and mean temperature of the warmest month. These variables tend to control long-term biomass productivity and how flammable that fuel can get during the fire season, the researchers said.

Variables that reflect more ephemeral fluctuations in climate, such as annual rainfall shifts due to El Niño cycles, were not included because they vary over shorter periods of time, and future climate projections are only considered representative for averages over time periods of 20-30 years or longer, the authors said.

The study found that the greatest disagreements among models occur during the next few decades, with uncertainty across more than half the planet about whether fire activity will increase or decrease. However, some areas of the world, such as the western United States, show a high level of agreement in climate models for the short term and long term, resulting in a stronger conclusion that those regions should brace themselves for more fire.

“When many different models paint the same picture, that gives us confidence that the results of our study reflect a robust fire frequency projection for that region,” Hayhoe said. “What is clear is that the choices we are making as a society right now and in the next few decades will determine what Earth’s climate will look like over this century and beyond.”

Study co-author David Ganz, who was director of forest carbon science at The Nature Conservancy at the time of the study, noted the significance of the findings for populations that rely upon fire-sensitive ecosystems.

“In Southeast Asia alone, there are millions of people that depend on forested ecosystems for their livelihoods,” he said. “Knowing how climate and fire interact are important factors that one needs to consider when managing landscapes to maintain these ecosystem goods and services.”

The researchers noted that the models they developed focused on fire frequencies and that linking these to other models of fire intensity and vegetation change are important next steps.

"Our ability to model fire activity is improving,” Moritz said. “A more basic challenge now is learning to coexist with fire itself.”

The Natural Sciences and Engineering Research Council of Canada, the U.S. Forest Service, the National Science Foundation and The Nature Conservancy helped support this study.

CONTACT: Katharine Hayhoe, director of the Climate Science Center at Texas Tech University, (806) 742-0015 or katharine.hayhoe@ttu.edu; Max Moritz, fire specialist in UC Cooperative Extension, UC Berkeley’s College of Natural Resources, (510) 642-7329 or mmoritz@berkeley.edu; David Ganz, USAID Lowering Emissions in Asia's Forests Program, +66-2-631-1259 (Thailand) or dganz@field.winrock.org.

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>