Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Affects Ants and Biodiversity

08.11.2011
Some people may consider them pests, but ants are key to many plants’ survival.

In the eastern US, ants are integral to plant biodiversity because they help disperse seeds. But ants' ability to perform this vital function, and others, may be jeopardized by climate change, according to Nate Sanders, Associate Professor of Ecology and Evolutionary Biology at the University of Tennessee, Knoxville.

Sanders and his collaborators have received a grant for nearly $2 million from the National Science Foundation to examine the cascading effects of climate change on ant communities and the ecosystem functions they provide.

"Ants are critically important to most ecosystems," Sanders said. "They eat other insects, circulate nutrients, increase turnover in the soil, and move seeds around."

Sanders and his colleagues are testing the effects of climate change on ants by heating up patches of forest and tracking how the ants respond. Inside Duke Forest in North Carolina and Harvard Forest in Massachusetts lie twelve five-meter wide, open-top chambers. Air temperature is incrementally increased by half a degree Celsius in each chamber for a total of a six-degree changes and ant behavior observed.

The researchers, led by Katie Stuble from UT and Shannon Pelini at Harvard Forest, noticed dramatic changes in the ants' daily activity in each chamber.

"If the temperature increases by just a half a degree Celsius, the most important seed-dispersing ants basically shut down," said Sanders. "They do not go out and forage and do the things they normally do."

Stuble observed that, on average, the ants foraged for about ten hours a day at normal temperatures. When temperatures were raised just a half a degree, the ants stayed in their nests underground and foraged just an hour.

The absence of ants' seed dispersal and nutrient cycling could have profound influence on biodiversity. For instance, it is believed that more than half of the plants in the forest understory of the Great Smoky Mountains National Park rely on ants for seed dispersal. Ants are found in ecosystems everywhere but in Antarctica and Iceland.

The researchers' goal is to provide information about the effects of climate change on biodiversity and ecosystems.

"We know that climate change is happening," Sanders said. "Lots of models make predictions about how biodiversity is going to respond. It will either respond by adapting, moving or going extinct. If you can't keep up with climate change, you will go extinct."

Sanders and his team will collect data through 2015. He is collaborating with colleagues from Harvard University, North Carolina State University, and University of Vermont. The project began in 2007 with funding from the Department of Energy. The team's papers can be read at http://web.utk.edu/~nsanders/.

Whitney Heins (865-974-5460, wheins@utk.edu)
Nate Sanders (865-974-5231, nsanders@utk.edu)

Whitney Heins | Newswise Science News
Further information:
http://www.utk.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>