Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change: A risk for plants and animals worldwide

07.10.2011
Climate change entails a risk for ecosystems on all continents.

Scientists of the Potsdam Institute for Climate Impact Research (PIK) have now identified the scale of danger for animals and plants in a worldwide analysis.

For that purpose, they developed a novel measure that for the first time systematically quantifies the impacts of changes in CO2 concentration in the air as well as in temperature and rainfall on terrestrial ecosystems. Computer simulations show that global warming could lead to an expansion of the Kazakh steppe but also lets forests grow in the presently treeless tundra.

If global mean temperature rises more than two to three degrees, the impacts in many regions can be drastically amplified.

“Until now, the impacts of climate change on the biosphere have not been quantified very well, certainly not on a global scale,” says Ursula Heyder, lead author of the study now published in the renowned scientific journal Environmental Research Letters. “We wanted to understand comprehensively which amount of warming puts which biotopes under pressure.” Therefore, the research team developed a biogeochemical measure that captures underlying processes in the material cycles. “If something changes here, it is very likely that the concerned ecosystems will change as a whole – down to the smallest bug,” says Heyder. “Because we cannot simulate this whole complexity with a computer, we calculate the risk for such changes considering the processes most relevant to ecosystems.”

The largest changes would probably affect those forests where the cooler climatic zones of the continental interiors of Asia and America transition into moderate latitudes. The study shows that here a larger number of cold-favoring plants could recede because of heat stress, more so than more warmth-tolerant species can take their place. The primeval forests at the Amazon, of significant importance for the world´s climate, are also affected due to possible shifts in their biogeochemical conditions, i.e. shifts in their water and carbon balance.

In cold natural habitats, nature already reacts to a warming of only two degrees – a magnitude already seen as an ambitious target in climate protection. For ecosystems in moderate latitudes, it makes a substantial difference whether temperatures rise by two degrees, three degrees or more: the risk of changes in the flora increase sharply. Up to now, the mitigation of greenhouse gas emissions pledged by a number of states after the Climate Summit in Copenhague sums up to a global warming in excess of three degrees in global means and could hence cause severe environmental changes.

“Nature adapts to climate changes by shifts within the ecosystems,” emphasizes Wolfgang Lucht, co-author of the study and head of PIK´s research domain Climate Impacts and Vulnerabilities. These changes are simply changes, not necessarily good or bad. “But whereas humankind can try to adapt societies to climate change, for example by dyke construction or crop breeding, ecosystems cannot – their change is fundamental,” Lucht explains. “Some simply disappear and are replaced by others.” Some relocate to the North or South, impeded by the speed of change, with impacts that are difficult to foresee. “Ecosystems are a precious good,” says Lucht. “At stake is the natural heritage of humankind.”

The calculations were carried out for 58 different climate projections to study a broad range of possible future developments. This also allowed to differentiate regions with larger uncertainty of the conclusions from those where changes seem certain. All projections show, however, that the majority of Earth´s land surfaces may be affected by moderate or severe changes of environmental characteristics unless comprehensive climate protection succeeds.

Article: Ursula Heyder, Sibyll Schaphoff, Dieter Gerten and Wolfgang Lucht: Risk of severe climate change impact on the terrestrial biosphere; Environmental Research Letters, doi:10.1088/1748-9326/6/3/034036

Weblink to article: http://iopscience.iop.org/1748-9326/6/3/034036

For further information please contact the PIK press office:

Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de

Mareike Schodder | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://iopscience.iop.org/1748-9326/6/3/034036

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>