Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climate change: a dark future for migratory fish

In Europe, most migratory fish species completing their cycle between the sea and the river are currently in danger.

Although restoration programmes have been set up, the future distribution of these species may be modified because of climate change. At the Bordeaux Cemagref, scientists have developed biogeographical models to predict their distribution on the 2100 horizon.

Migratory fish are noteworthy in that they use both the sea and freshwater environments to complete their life cycle. Since the last glacial period 18,000 years ago, this allowed them to progressively colonize all parts of Europe. However, over-fishing, river development, pollution, etc. have contributed to these migratory fish populations regressing and today most of these species are endangered.

Moreover, they must adapt to global warming, already implicated in the reduced numbers of individuals of certain species, such as the reduction in smelt numbers observed over the past few years in some of the southernmost parts of their distribution area. To identify sensitive species that may be the most severely affected by this climate change, their future geographical distribution, integrating rises in temperature and changes in precipitation, was simulated as part of a doctoral thesis at the Bordeaux Cemagref.

A historical model of species distribution
First, Cemagref researchers inventoried the migratory fish species throughout Europe, the Middle East and North Africa. This large geographical scale covered nearly the entire geographical area of each of the 28 European species counted in the census. How does temperature limit the distribution area of these species? To answer this question, 200 catchment areas were studied to determine the distribution of each species in terms of presence-absence and abundance. The study established a distribution model for each species at a time when humans put little pressure on the environment. The first decade of the 20th century was chosen as the reference period. More than 400 bibliographic references were analysed and the lists made were completed by the partner laboratories in the European Diadfish network . In addition to air temperature, four other factors known to influence the distribution of freshwater fish were retained: longitude at the mouth of the watershed, the watershed’s surface area, the altitude at the source and precipitations.
What does the future hold for migratory fish in 2100?
The next step applied these distribution models to a context of climate change, using the four reference climate scenarios developed by the Intergovernmental Expert Group on Climate Change (Groupement d’Experts Intergouvernementaux sur l’Evolution du Climat; GIEC, 2000). The timeline covered the period to 2100 so that significant changes could be measured in the fish populations with a sufficiently long-term perspective. Moreover, this duration corresponds to most of the restoration plans successfully carried out for migratory fish. Based on a temperature rise between 1 and 7°C, the response of the species can be classed into three categories: shrinkage of the distribution area, extension of the distribution area and no change in the distribution area.

This study has shown that for most species the situation will deteriorate. For example, the smelt and the Arctic char will lose approximately 90% of the watersheds that are favourable for reduced or null gains. Only two species, the thinlipped mullet and the twaite shad, will be able to expand their territory towards the north, beyond their initial distribution area. Finally, in accordance with the predictions, the southern watersheds risk losing most of their species. Could this be an opportunity for more exotic migratory fish? Researchers remain very reserved, even pessimistic, on this point, because few of these species are found along the coast of West Africa because of a lack of permanent rivers to accommodate them.

The priority is therefore restoring the fish environments and populations. The prediction models within these studies are good tools that can be used to set up conservation programmes over the long term at different scales.

Marie Signoret | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>