Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change: a dark future for migratory fish

15.12.2008
In Europe, most migratory fish species completing their cycle between the sea and the river are currently in danger.

Although restoration programmes have been set up, the future distribution of these species may be modified because of climate change. At the Bordeaux Cemagref, scientists have developed biogeographical models to predict their distribution on the 2100 horizon.

Migratory fish are noteworthy in that they use both the sea and freshwater environments to complete their life cycle. Since the last glacial period 18,000 years ago, this allowed them to progressively colonize all parts of Europe. However, over-fishing, river development, pollution, etc. have contributed to these migratory fish populations regressing and today most of these species are endangered.

Moreover, they must adapt to global warming, already implicated in the reduced numbers of individuals of certain species, such as the reduction in smelt numbers observed over the past few years in some of the southernmost parts of their distribution area. To identify sensitive species that may be the most severely affected by this climate change, their future geographical distribution, integrating rises in temperature and changes in precipitation, was simulated as part of a doctoral thesis at the Bordeaux Cemagref.

A historical model of species distribution
First, Cemagref researchers inventoried the migratory fish species throughout Europe, the Middle East and North Africa. This large geographical scale covered nearly the entire geographical area of each of the 28 European species counted in the census. How does temperature limit the distribution area of these species? To answer this question, 200 catchment areas were studied to determine the distribution of each species in terms of presence-absence and abundance. The study established a distribution model for each species at a time when humans put little pressure on the environment. The first decade of the 20th century was chosen as the reference period. More than 400 bibliographic references were analysed and the lists made were completed by the partner laboratories in the European Diadfish network . In addition to air temperature, four other factors known to influence the distribution of freshwater fish were retained: longitude at the mouth of the watershed, the watershed’s surface area, the altitude at the source and precipitations.
What does the future hold for migratory fish in 2100?
The next step applied these distribution models to a context of climate change, using the four reference climate scenarios developed by the Intergovernmental Expert Group on Climate Change (Groupement d’Experts Intergouvernementaux sur l’Evolution du Climat; GIEC, 2000). The timeline covered the period to 2100 so that significant changes could be measured in the fish populations with a sufficiently long-term perspective. Moreover, this duration corresponds to most of the restoration plans successfully carried out for migratory fish. Based on a temperature rise between 1 and 7°C, the response of the species can be classed into three categories: shrinkage of the distribution area, extension of the distribution area and no change in the distribution area.

This study has shown that for most species the situation will deteriorate. For example, the smelt and the Arctic char will lose approximately 90% of the watersheds that are favourable for reduced or null gains. Only two species, the thinlipped mullet and the twaite shad, will be able to expand their territory towards the north, beyond their initial distribution area. Finally, in accordance with the predictions, the southern watersheds risk losing most of their species. Could this be an opportunity for more exotic migratory fish? Researchers remain very reserved, even pessimistic, on this point, because few of these species are found along the coast of West Africa because of a lack of permanent rivers to accommodate them.

The priority is therefore restoring the fish environments and populations. The prediction models within these studies are good tools that can be used to set up conservation programmes over the long term at different scales.

Marie Signoret | alfa
Further information:
http://www.cemagref.fr/Informations/Presse/IM.htm

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>