Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean Energy from Biomass Shows Promise

21.10.2008
Michigan’s forest industry produces thousands of jobs and hundreds of thousands of tons of unused residues each year. Why not use that woody material to help generate clean electric power?

That was one of the important questions Wolverine Power Cooperative asked Michigan Technological University professor Robert Froese and colleagues regarding the cooperative’s Wolverine Clean Energy Venture near Rogers City, Mich.

The answer, presented in a report to Wolverine, state legislators and representatives of Governor Jennifer Granholm, demonstrates the potential for homegrown biomass to reduce the use of fossil fuel while also decreasing carbon dioxide emissions from the generation of electricity.

“Neither inherent productivity nor environmental sustainability is holding back biomass production,” the Michigan Tech researchers concluded. “Clearly, Wolverine has the potential to take a leading role in the development of clean energy from biomass for Michigan.”

Brian Warner, director of environmental services for Wolverine Power Cooperative, was also encouraged by the results of this initial study. “Wolverine is excited about the potential for increased use of sustainable biomass for the generation of electricity for our Michigan-based members,” Warner said.

Unused logging residues and other material removed from timberland within 75 miles of Rogers City total about 220,000 dry tons per year, enough to generate at least 35 megawatts of electricity – the energy needed to serve 25,000 Michigan households.

Froese reported that only one-third of forest growth in the area is harvested. If forest land was utilized to its full potential, Wolverine could count on sufficient fuel from residues alone to produce enough electricity from the Rogers City plant to serve 75,000 homes.

Equally promising, the Michigan Tech researcher said, is the potential for using idle agricultural lands to grow energy crops, including switchgrass and fast growing trees such as hybrid poplar, silver maple, and European larch. Within 75 miles of Rogers City, there are nearly 500,000 acres of open land not being used for agriculture.

“The land is available, and it is good land for growing energy crops”, said Froese. “Also, idle land could be used without concern about competition with existing agricultural crops.”

Based on the findings of the report, Wolverine partnered again with Froese to install trial plantings this spring near the Rogers City area. These trials will help understand the optimum way to cultivate energy crops, by evaluating growth of a variety of tree species, different spacing of the species planted and various seedling types.

“While Wolverine and Michigan Tech have much more to learn, and Wolverine cannot commit to the use of biomass for the Wolverine Clean Energy Venture at this time, the use of biomass would clearly contribute to the local economy and is consistent with Wolverine’s environmental stewardship goals,” Warner said.

Other areas studied by Michigan Tech researchers included carbon dioxide emission reduction potential, environmental impacts, energy consumption, resource depletion and other implications of generating power entirely from coal compared to using 1 to 20 percent of various kinds of biomass. The use of biomass was the compared to other CO2 emission reduction options, such as geologic sequestration and improved forest management measures.

Michigan Tech found that using up to 20 percent biomass from logging residues offered the greatest potential CO2 and energy consumption reduction compared to geologic sequestration or reducing CO2 emission through forest stand management.

“Michigan has been blessed with an abundant forest resource. If managed wisely, this resource can help the state’s power companies reduce CO2 and other air emissions today while other promising technologies are developed for future, additional emission reductions,” Warner said.

Wolverine Power Cooperative is a not-for-profit generation and transmission cooperative headquartered in Cadillac, Michigan. Wolverine Power Cooperative is owned by and supplies wholesale electric power to six members: Cherryland Electric Cooperative, Grawn; Great Lakes Energy, Boyne City; HomeWorks Tri-County Electric Cooperative, Portland; Presque Isle Electric & Gas Co-op, Onaway; Spartan Renewable Energy, Cadillac; and Wolverine Power Marketing Cooperative, Cadillac.

Michigan Technological University is a leading public research university, conducting research, developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 120 undergraduate and graduate degree programs in engineering, forestry and environmental sciences, computing, technology, business and economics, natural and physical sciences, arts, humanities and social sciences.

Jennifer Donovan | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017 | Life Sciences

The fastest light-driven current source

26.09.2017 | Physics and Astronomy

Beer can lift your spirits

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>