Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean Energy from Biomass Shows Promise

21.10.2008
Michigan’s forest industry produces thousands of jobs and hundreds of thousands of tons of unused residues each year. Why not use that woody material to help generate clean electric power?

That was one of the important questions Wolverine Power Cooperative asked Michigan Technological University professor Robert Froese and colleagues regarding the cooperative’s Wolverine Clean Energy Venture near Rogers City, Mich.

The answer, presented in a report to Wolverine, state legislators and representatives of Governor Jennifer Granholm, demonstrates the potential for homegrown biomass to reduce the use of fossil fuel while also decreasing carbon dioxide emissions from the generation of electricity.

“Neither inherent productivity nor environmental sustainability is holding back biomass production,” the Michigan Tech researchers concluded. “Clearly, Wolverine has the potential to take a leading role in the development of clean energy from biomass for Michigan.”

Brian Warner, director of environmental services for Wolverine Power Cooperative, was also encouraged by the results of this initial study. “Wolverine is excited about the potential for increased use of sustainable biomass for the generation of electricity for our Michigan-based members,” Warner said.

Unused logging residues and other material removed from timberland within 75 miles of Rogers City total about 220,000 dry tons per year, enough to generate at least 35 megawatts of electricity – the energy needed to serve 25,000 Michigan households.

Froese reported that only one-third of forest growth in the area is harvested. If forest land was utilized to its full potential, Wolverine could count on sufficient fuel from residues alone to produce enough electricity from the Rogers City plant to serve 75,000 homes.

Equally promising, the Michigan Tech researcher said, is the potential for using idle agricultural lands to grow energy crops, including switchgrass and fast growing trees such as hybrid poplar, silver maple, and European larch. Within 75 miles of Rogers City, there are nearly 500,000 acres of open land not being used for agriculture.

“The land is available, and it is good land for growing energy crops”, said Froese. “Also, idle land could be used without concern about competition with existing agricultural crops.”

Based on the findings of the report, Wolverine partnered again with Froese to install trial plantings this spring near the Rogers City area. These trials will help understand the optimum way to cultivate energy crops, by evaluating growth of a variety of tree species, different spacing of the species planted and various seedling types.

“While Wolverine and Michigan Tech have much more to learn, and Wolverine cannot commit to the use of biomass for the Wolverine Clean Energy Venture at this time, the use of biomass would clearly contribute to the local economy and is consistent with Wolverine’s environmental stewardship goals,” Warner said.

Other areas studied by Michigan Tech researchers included carbon dioxide emission reduction potential, environmental impacts, energy consumption, resource depletion and other implications of generating power entirely from coal compared to using 1 to 20 percent of various kinds of biomass. The use of biomass was the compared to other CO2 emission reduction options, such as geologic sequestration and improved forest management measures.

Michigan Tech found that using up to 20 percent biomass from logging residues offered the greatest potential CO2 and energy consumption reduction compared to geologic sequestration or reducing CO2 emission through forest stand management.

“Michigan has been blessed with an abundant forest resource. If managed wisely, this resource can help the state’s power companies reduce CO2 and other air emissions today while other promising technologies are developed for future, additional emission reductions,” Warner said.

Wolverine Power Cooperative is a not-for-profit generation and transmission cooperative headquartered in Cadillac, Michigan. Wolverine Power Cooperative is owned by and supplies wholesale electric power to six members: Cherryland Electric Cooperative, Grawn; Great Lakes Energy, Boyne City; HomeWorks Tri-County Electric Cooperative, Portland; Presque Isle Electric & Gas Co-op, Onaway; Spartan Renewable Energy, Cadillac; and Wolverine Power Marketing Cooperative, Cadillac.

Michigan Technological University is a leading public research university, conducting research, developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 120 undergraduate and graduate degree programs in engineering, forestry and environmental sciences, computing, technology, business and economics, natural and physical sciences, arts, humanities and social sciences.

Jennifer Donovan | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>