Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean Air Act has led to improved water quality in the Chesapeake Bay watershed

07.11.2013
Declines in atmospheric nitrogen pollution improved water quality over a 23-year period

A new study shows that the reduction of pollution emissions from power plants in the mid-Atlantic is making an impact on the quality of the water that ends up in the Chesapeake Bay.

The study by scientists at the University of Maryland Center for Environmental Science confirms that as the amount of emissions of nitrogen oxide from coal-fired power plants declined in response to the Clean Air Act, the amount of nitrogen pollution found in the waterways of forested areas in Pennsylvania, Maryland and Virginia fell as well.

"When we set out to reduce nitrogen pollution to the Chesapeake Bay, deposition of nitrogen resulting from air pollution on the watershed was considered uncontrollable," said Donald Boesch, president of the University of Maryland Center for Environmental Science. “This study shows that improvements in air quality provided benefits to water quality that we were not counting on.”

Researchers evaluated long-term water quality trends for nine forested mountain watersheds located along the spine of the Appalachian Mountains from Pennsylvania to southern Virginia over a 23-year period (1986 to 2009). The sampling began slightly before the Clean Air Act of 1990 imposed controls on power plant emissions to reduce nitrogen oxide pollution through its Acid Rain Program. According to the EPA, total human-caused nitrogen oxide emissions declined 32% from 1997 to 2005 in 20 eastern U.S. states that participated in the program.

Intended to reduce the emissions (sulfur dioxide and nitrogen oxide) that caused acid rain, the program had the unintended consequence of reducing the amount of nitrogen oxide particles landing on forests in the sample area and ultimately improving water quality in the watershed.

“It worked for something nobody anticipated,” said lead author Keith Eshleman, a professor at the University of Maryland Center for Environmental Science’s Appalachian Laboratory. “The original idea was to reduce nitrogen oxide concentrations in the atmosphere because that would reduce acidity of precipitation and decrease ozone in the atmosphere. The other result was that water quality has improved, a side benefit that was unanticipated.”

Air pollution that falls on the land (known atmospheric deposition) is one of the biggest sources of pollution to the forested area that impacts the Chesapeake Bay--sixty percent of the watershed. Nitrogen accumulation has significant consequences for air quality, human health, and the health of aquatic ecosystems. When excess nitrogen enters the streams and waterways, it can cause algae blooms that significantly impact water quality and marine life.

“In our most pristine and most heavily forested basins, nitrogen deposition is a primary driver of pollution,” said Eshleman. “Where we are located in the Mid Atlantic, we’ve historically had some of the highest rates of deposition, and received some of the greatest reductions owing to the Clean Air Act.”

The study, “Surface water quality is improving due to declining atmosphere N deposition” is published in the November 5 issue of Environment Science and Technology by Keith Eshleman, Robert Sabo and Kathleen Kline of the University of Maryland Center for Environmental Science.

The Appalachian Laboratory is located in the mountains of western Maryland, the headwaters of the Chesapeake Bay watershed. Since 1962, the Frostburg-based institution has actively studied the effects of land-use change on the freshwater and terrestrial ecosystems of the region, how they function in the Chesapeake Bay watershed, and how human activity may influence their health and sustainability on local, regional and global scales. The scientific results help to unravel the consequences of environmental change, manage natural resources, restore ecosystems, and foster ecological literacy.

Amy Pelsinsky | EurekAlert!
Further information:
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>