Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean Air Act has led to improved water quality in the Chesapeake Bay watershed

07.11.2013
Declines in atmospheric nitrogen pollution improved water quality over a 23-year period

A new study shows that the reduction of pollution emissions from power plants in the mid-Atlantic is making an impact on the quality of the water that ends up in the Chesapeake Bay.

The study by scientists at the University of Maryland Center for Environmental Science confirms that as the amount of emissions of nitrogen oxide from coal-fired power plants declined in response to the Clean Air Act, the amount of nitrogen pollution found in the waterways of forested areas in Pennsylvania, Maryland and Virginia fell as well.

"When we set out to reduce nitrogen pollution to the Chesapeake Bay, deposition of nitrogen resulting from air pollution on the watershed was considered uncontrollable," said Donald Boesch, president of the University of Maryland Center for Environmental Science. “This study shows that improvements in air quality provided benefits to water quality that we were not counting on.”

Researchers evaluated long-term water quality trends for nine forested mountain watersheds located along the spine of the Appalachian Mountains from Pennsylvania to southern Virginia over a 23-year period (1986 to 2009). The sampling began slightly before the Clean Air Act of 1990 imposed controls on power plant emissions to reduce nitrogen oxide pollution through its Acid Rain Program. According to the EPA, total human-caused nitrogen oxide emissions declined 32% from 1997 to 2005 in 20 eastern U.S. states that participated in the program.

Intended to reduce the emissions (sulfur dioxide and nitrogen oxide) that caused acid rain, the program had the unintended consequence of reducing the amount of nitrogen oxide particles landing on forests in the sample area and ultimately improving water quality in the watershed.

“It worked for something nobody anticipated,” said lead author Keith Eshleman, a professor at the University of Maryland Center for Environmental Science’s Appalachian Laboratory. “The original idea was to reduce nitrogen oxide concentrations in the atmosphere because that would reduce acidity of precipitation and decrease ozone in the atmosphere. The other result was that water quality has improved, a side benefit that was unanticipated.”

Air pollution that falls on the land (known atmospheric deposition) is one of the biggest sources of pollution to the forested area that impacts the Chesapeake Bay--sixty percent of the watershed. Nitrogen accumulation has significant consequences for air quality, human health, and the health of aquatic ecosystems. When excess nitrogen enters the streams and waterways, it can cause algae blooms that significantly impact water quality and marine life.

“In our most pristine and most heavily forested basins, nitrogen deposition is a primary driver of pollution,” said Eshleman. “Where we are located in the Mid Atlantic, we’ve historically had some of the highest rates of deposition, and received some of the greatest reductions owing to the Clean Air Act.”

The study, “Surface water quality is improving due to declining atmosphere N deposition” is published in the November 5 issue of Environment Science and Technology by Keith Eshleman, Robert Sabo and Kathleen Kline of the University of Maryland Center for Environmental Science.

The Appalachian Laboratory is located in the mountains of western Maryland, the headwaters of the Chesapeake Bay watershed. Since 1962, the Frostburg-based institution has actively studied the effects of land-use change on the freshwater and terrestrial ecosystems of the region, how they function in the Chesapeake Bay watershed, and how human activity may influence their health and sustainability on local, regional and global scales. The scientific results help to unravel the consequences of environmental change, manage natural resources, restore ecosystems, and foster ecological literacy.

Amy Pelsinsky | EurekAlert!
Further information:
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>