Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chinese scientists discover evidence of giant panda's population history and local adaptation

17.12.2012
The latest genomic population study was published in Nature Genetics

A research team, led by Institute of Zoology of Chinese Academy of Sciences and BGI, has successfully reconstructed a continuous population history of the giant panda from its origin to the present.

The findings suggested whereas global changes in climate were the primary drivers in panda population fluctuation for millions of years, human activities were likely to underlie recent population divergence and serious decline. This work reveals a good example for assessing and establishing the best conservation method for other endangered species. The latest study was published online in Nature Genetics.

The giant panda is the rarest member of the bear family. Looked upon as the ambassador for all endangered species, it is a well-recognized symbol of international wildlife conservation. The giant panda is currently threatened by continued habitat loss, human persecution, among others. Its dietary specialization, habitat isolation, and reproductive constraints have led to a perception that this is a species at an "evolutionary dead end", destined for deterministic extinction in the modern world.

In this study, researchers carried out whole genome resequencing of 34 wild giant pandas and found the current six geographic populations of giant panda could be divided into three genetic populations, including Qinling (QIN), Minshan (MIN) and Qionglai-Daxiangling-Xiaoxiangling-Liangshan (QXL). Through reconstructing giant panda's population history, they found several important evolutionary events such as two population expansions, two bottlenecks and two population divergences.

The giant panda has a very special bamboo diet, while its ancestor was omnivorous or carnivores. As early as about 3 Myr ago, they probably had already completed their dietary swift and pygmy panda emerged with bamboo as its primary diet. The warm and wet weather at that time provided ideal conditions for the spread of bamboo forests that further led to the first population expansion of giant panda. However, about 0.7 Myr ago, the panda population began to decline due to the two largest Pleistocene glaciations happened in China, and its first population bottleneck occurred at about 0.3 Myr ago. During that period, pygmy panda was gradually replaced by another subspecies - baconi panda that has larger body size.

After the retreat of the Penultimate Glaciations, giant panda's second population expansion happened and it reached its population peak between 30~50 thousand years (kyr) ago. The warm weather in the Greatest Lake Period (30~40 kyr ago) and alpine conifer forest may play an important role in the flourishing of the panda population. However, during the period of last glacial maximum (LGM), the climate was cold, dry, and inhospitable with frequent storms and a dust-laden atmosphere. Under such harsh environment, extensive panda habitats were loss and its second population bottleneck occurred.

The more recent panda population history showed that the panda population separated into Qinling (QIN) and non-QIN populations at about 0.3Myr ago, and then the non-QIN cluster diverged into two populations, the Minshan (MIN) and Qionglai-Daxiangling-Xiaoxiangling-Liangshan (QXL) at about 2.8 KYA ago. Subsequently, the three populations were different in the ways of fluctuation. For example, there was a drastic decline in the QIN, a slight increase in the MIN and a more remarkable growth in the QXL populations.

Researchers identified the signals of panda's local adaptation. They found the largest group of selected genes in these populations was related to sensory system. However, the two genes, Tas2r49 and Tas2r3, were associated with bitter taste and were under directional selection between the QIN and non-QIN populations, showing no signal of directional selection between MIN and QXL populations.

As a form of olfactory communication, odor perception is crucial for reproduction and survival of giant pandas in the dense forest. Researchers found the MIN and QXL populations had fewer directionally selected genes than QIN and non-QIN, suggesting less variation happens in the selection processes between MIN and QXL. They also found the evidence that population fluctuations were driven by global climate shifts, but recent human activities have likely caused population divergence and the serious recent decline.

Shancen Zhao, Project Manager from BGI, said, "We have identified three genetic populations of giant panda for the current six geographic populations lived in western of China. The varied local adaptations found in our study provide invaluable resource for researchers to better select effective conservation methods to rescue the giant panda even other endangered species. The translocation of wild-caught individuals or releasing the captive-bred ones may be a feasible approach. "

About BGI
BGI was founded in 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, which includes both private non-profit genomic research institutes and sequencing application commercial units, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 250 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, have sequenced the human Gut metagenome, and a significant proportion of the genomes for 1,000 genomes. For more information about BGI please visit www.genomics.cn.

Media Contact:
Bicheng Yang
Public Communication Officer
BGI
+86-755-82639701
yangbicheng@genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>