Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

China's synthetic gas plants would be greenhouse giants

25.09.2013
Huge scale of gas-from-coal plants 'an environmental disaster in the making'

Coal-powered synthetic natural gas plants being planned in China would produce seven times more greenhouse gas emissions than conventional natural gas plants, and use up to 100 times the water as shale gas production, according to a new study by Duke University researchers.

These environmental costs have been largely neglected in the drive to meet the nation's growing energy needs, the researchers say, and might lock China on an irreversible and unsustainable path for decades to come.

"Using coal to make natural gas may be good for China's energy security, but it's an environmental disaster in the making," said Robert B. Jackson, Nicholas Professor of Environmental Sciences and director of the Duke Center on Global Change.

"At a minimum, Chinese policymakers should delay implementing their synthetic natural gas plan to avoid a potentially costly and environmentally damaging outcome," said Chi-Jen Yang, a research scientist at Duke's Center on Global Change. "An even better decision would be to cancel the program entirely."

Yang is lead author of the new study, which was published Thursday in the peer-reviewed journal Nature Climate Change.

As part of the largest investment in coal-fueled synthetic natural gas plants in history, the central Chinese government recently has approved construction of nine large-scale plants capable of producing more than 37 billion cubic meters of synthetic natural gas annually. Private companies are planning to build more than 30 other plants, capable of producing as much as 200 million cubic meters of natural gas each year -- far exceeding China's current natural gas demand.

"These plants are coming online at a rapid pace. If all nine plants planned by the Chinese government were built, they would emit 21 billion tons of carbon dioxide over a typical 40-year lifetime, seven times the greenhouse gas that would be emitted by traditional natural gas plants," Jackson said.

"If all 40 of the facilities are built, their carbon dioxide emissions would be an astonishing 110 billion tons," Jackson said.

The analysis by Yang and Jackson finds that if the gas produced by the new plants is used to generate electricity, the total lifecycle greenhouse gas emissions would be 36 percent to 82 percent higher than pulverized coal-fired power.

If the synthetic natural gas made by the plants were used to fuel vehicles, the lifecycle greenhouse gas emissions would be twice as large as from gasoline-fueled vehicles.

"The increased carbon dioxide emissions from the nine government-approved plants alone will more than cancel out all of the reductions in greenhouse gas emissions from China's recent investments in wind and solar electricity," Yang said. "While we applaud China's rapid development in clean energy, we must be cautious about this simultaneous high-carbon leapfrogging."

The study notes that the plants would also emit hydrogen sulfide and mercury, which, if not properly scrubbed and treated, are potentially harmful to human health.

Excessive water consumption by the plants is also a concern.

"Producing synthetic natural gas requires 50 to 100 times the amount of water you need to produce shale gas," Yang said. "The nine plants approved by the government -- most of which are located in desert or semi-desert regions in Xinjiang and Inner Mongolia -- will consume more than 200 million tons of water annually and could worsen water shortages in areas that already are under significant water stress."

The overall environmental impacts will be severe, Jackson said. "It will lock in high greenhouse gas emissions, water use and mercury pollution for decades. Perhaps there's still time to stop it."

"China's Synthetic Natural Gas Revolution," Chi-Jen Yang, Robert B. Jackson. Nature Climate Change, Sept. 26, 2013 DOI: 10.1038/nclimate1988

Tim Lucas | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>