Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chernobyl's radioactivity reduced the populations of birds of orange plumage

27.04.2011
On April 26, 1986, history's greatest nuclear accident took place northwest of the Ukrainian city of Chernobyl. Despite the scale of the disaster, 25 years later, we still do not know its real effects. An international team of investigators has shown for the first time that the colour of birds' plumage may make them more vulnerable to radioactivity.

Radiation causes oxidative stress, damages biological molecules and may have "important" negative effects on organisms in relatively high doses, like those found in certain zones close to Chernobyl.


Bird populations fell as the levels of radiation in peripheral zones of Chernobyl (Ukraine) rose. Credit: Rafael Palomo Santana

"In the case of the birds studied, these effects were seen in the size of their populations", says Ismael Galván, lead author of the study and researcher in the Laboratory of Ecology, Systematics and Evolution at the University of Paris-Sur, in France, speaking to SINC.

According to the study, which has been published in the journal Oecologia, bird populations fell as the levels of radiation in peripheral zones of Chernobyl (Ukraine) rose. In total, the researchers analysed the abundance of 97 bird species exposed to different levels of radiation during four years.

In the majority of the birds (64 species), the populations diminished with the level or radioactivity. "Nevertheless, the populations of a few species (the 33 remaining species) experienced positive effects from the radiation (though the magnitude of these effects was very low in some cases), perhaps due to the reduction in competition with other species", explains Galván.

Colour: a bird's weak or strong point

The scientists concentrated on the colouring generated by melanins – pigments which protect from ultraviolet radiation and generate camouflage patterns – of the nearly one hundred species of bird studied. The reason: the type of pigmentation may interfere with the ability to resist radioactivity's negative effects.

"The impact on the populations depends, at least in part, on the amount of plumage whose colouring is generated by pheomelanin, one of the two main types of melanins, which produces orangish and brownish colours", the Spanish expert adds.

The birds of Chernobyl with the most pheomelanism (with the most plumage coloured by pheomelanin) were judged to be the "most negatively" affected by the radioactivity. As the pigment consumes glutathione (one of the antioxidants most susceptible to radiation and whose level tends to be diminished by its effects), in these birds, the capacity to combat the oxidative stress generated by radiation "probably" diminishes.

References:

Galván, Ismael; Mousseau, Timothy A.; Moller, Anders P. "Bird population declines due to radiation exposure at Chernobyl are stronger in species with pheomelanin-based coloration" Oecologia 165(4): 827-835, april of 2011.

SINC Team | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>