Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical pollution of European waters is stronger than anticipated

17.06.2014

 Ecological targets of the Water Framework Directive will presumably not be met.

Substantial improvements in freshwater quality by 2015 have been a declared objective of the EU member states, manifesting itself by the requirements of the Water Framework Directive (WFD).


Rivers such as the Danube are fascinating ecosystems. They provide important ecosystem functions and services such as recreation, fishing and drinking water for millions of people. Unfortunately, these ecosystems are subject to chemical inputs from adjacent urban areas, agriculture and industry. This leads to a chemical cocktail that adversely affects algae and freshwater animals and carries potential risks for humans.

Photo: André Künzelmann/UFZ


Agriculture is responsible for the major part of the input of chemicals into streams and rivers. Pesticides dominate the chemical burden of freshwater ecosystems.

Photo: André Künzelmann, UFZ

A recent study conducted by the Institute for Environmental Sciences Landau together with the Helmholtz Centre for Environmental Research (UFZ) and fellow scientists from France (University of Lorraine and EDF) and Switzerland (Swiss Federal Institute of Aquatic Science and Technology - EAWAG) shows that this target is unlikely to be met due to the high levels of toxicants in the water bodies.

One of the reasons: current measures for the improvement of water quality do not account for the effects of toxic chemicals. The study demonstrates for the first time on a pan-European scale that the ecological risks posed by toxic chemicals are considerably greater than has generally been assumed.

Up to now environmental authorities and parts of the scientific community have considered toxic chemicals to be rather a local problem affecting only a few bodies of water. The current study, however, reveals for the first time on a large scale the ecological risks emanating from chemical toxicants for several thousands of European aquatic systems. Chemical toxicity represents an ecological threat to almost half of all European bodies of water, and in approximately 15% of cases, the biota in freshwater systems may even be subject to acute mortality.

Actual state of European aquatic ecosystems is presumably even worse

Together with their French and Swiss fellow researchers the scientists from Landau and Leipzig have investigated the exceedance of risk thresholds in the river basin of major stream networks, such as the Danube and the Rhine River at a pan-European level. For the first time, the extent to which risk thresholds were exceeded for three groups of organisms, namely fish, invertebrates and algae / primary producers, was estimated for these major river basins. The data used originated from official water monitoring activities of recent years. The scope of sampling consequently varied significantly in terms of spatial coverage, as well as timing, therefore, direct comparison(s) between different countries proves rather difficult.

For example, the study finds, that water quality is worst in France, presumably due to the fact that authorities in this country installed a dense monitoring network and analyzed water samples for a multitude of substances, including the ecotoxicological relevant compounds. In other countries, by contrast, risks may remain unrecognized due to inadequate sensitivity in chemical analysis or an incomplete list of ecotoxicologically relevant monitoring compounds. "Generally speaking we probably underestimated rather than overestimated the risks in our analyses", comments the head of the research study team, Jun.-Prof. Dr. Ralf B. Schäfer from the Institute for Environmental Sciences Landau. "The actual state and condition of European freshwater ecosystems is probably even worse."

The primary factors contributing to chemical contamination of aquatic ecosystems are the discharge from agricultural activities, urban areas and municipal sewage treatment plants. Pesticides were by far the major toxicants of freshwater systems, although, organotin compounds, brominated flame retardants and combustion-derived polycyclic aromatic hydrocarbons, also occurred at critical levels of concentration. EU requirements and targets regarding water quality currently focus primarily on the occurrence of the so-called priority substance, i.e. around 40 chemicals classified as being particularly hazardous to the aquatic environment. "Fortunately the use of many of these priority substances is no longer permitted and therefore, their concentration levels are steadily decreasing in many parts of the European streams. The real problem, however, is that a large number of chemicals which are currently in use are not taken into account at all in the context of water quality monitoring", states Dr. Werner Brack from the Helmholtz Centre for Environmental Research in Leipzig. Additionally, recent findings show that for certain substances the assumed level(s) of effect concentration might be too high.

Improved definition of framework objectives and coordination are essential

In order to cope with the multitude of potentially hazardous substances , the scientists participating in this study recommend the introduction and intelligent linking of ecological and effects-based chemical screening methods as the only financially viable way of capturing the whole spectrum of ecotoxicologically relevant substances. "In this way", Werner Brack points out, "hazardous substances can be detected even before they have been placed on the priority list". The current study, shows that there is an urgent need for action, especially with respect to the current chemical monitoring activities. "In practical terms, this means that urgent action is required at all levels, to ensure the sustainable protection of our aquatic ecosystems", says Schäfer. The necessary steps to be taken range from general prevention of excessive chemical inputs into water bodies and the banishment and substitution of particularly problematic substances, up to a reduction in the application of agricultural chemicals and an improvement of sewage and wastewater treatment methods and technology. There is consensus among the members of the research team that, unless there is noticeable change to the current situation, the objectives and targets of the Water Framework Directive will not be met, due to toxicity from chemicals in the freshwater ecosystems. In the long term this may also lead to risks for humans, caused by possible failure of ecosystem services, such as impairment of the self-purification capacity of water bodies.

The study:

„Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale", Egina Malaj, Peter C. von der Ohe, Matthias Grote, Ralph Kühne, Cédric P. Mondy, Philippe Usseglio-Polatera, Werner Brack, Ralf B. Schäfer. The study has been published initially online in the scientific journal, Proceedings of the National Academy of Sciences (PNAS, Early Edition), on 16. June 2014 and can be accessed via the following link:

http://www.pnas.org/cgi/doi/10.1073/pnas.1321082111

This study was funded by Electricité de France (EDF), the French National Research Agency (ANR) and the Deutsche Forschungsgemeinschaft (DFG). 

Participating institutions:

Institute for Environmental Sciences Landau at the University of Koblenz-Landau, Helmholtz Centre for Environmental Research (UFZ), Electricité de France (EDF) and the University of Lorraine in France and the Swiss Federal Institute of Aquatic Science and Technology (EAWAG) in Switzerland. 

Further information:

University of Koblenz-Landau

Institute for Environmental Sciences Landau

Jun.-Prof. Dr. Ralf B. Schäfer

Telephone: +49 6341 280-31536, e-mail: schaefer-ralf@uni-landau.de

Helmholtz Centre for Environmental Research (UFZ)

Department of Effect-Directed Analysis

Dr. Werner Brack

Telephone: +49 341 235-1531, http://www.ufz.de/index.php?de=17477

Press contacts:

University of Koblenz-Landau


Kerstin Theilmann (University Press Office) 


Telephone: +49 6341 280-32219


E-mail: theil@uni-koblenz-landau.de

or:

Helmholtz Centre for Environmental Research

Tilo Arnhold, Susanne Hufe (UFZ Press Office)

Telephone: +49 341 235-1635, -1635

http://www.ufz.de/index.php?de=640

Links:

Controlling Chemicals' Fate:

http://www.ufz.de/index.php?en=32298

EU Project SOLUTIONS:

http://www.solutions-project.eu/ 

The Institute for Environmental Sciences Landau is engaged in basic and applied research focussing on the multitude of interaction between humans and the environment. The institute combines the expertise of nine interdisciplinary working groups, covering current research into areas ranging from molecules to ecosystems and up to human society related issues. The Institute for Environmental Sciences Landau was established in 2004 at the University of Koblenz-Landau, Campus Landau. Further information is available under: www.umwelt.uni-landau.de

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Kerstin Theilmann/Tilo Arnhold | UFZ News

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>