Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Enables Researchers to Extract Significant Oil Deposits; Leaves Positive Environmental Footprint

31.01.2013
Chemicals found in common household items, like toothpaste and soap, are proving to be the right formula to safely extract up to 70 percent of the oil still embedded in high-salt oil reservoirs in the United States.

With controversy surrounding advance recovery methods like fracking, a team from the University of Oklahoma Institute for Applied Surfactant Research – Jeff Harwell, Ben Shiau and Bruce Roberts – has formulated an environmentally sound compound that increases oil flow in previously pumped reservoirs.

By using a surfactant that decreases the surface tension, oil is released from the rock so it can move with the injected water and be pushed to the production wells safely.

Secondary recovery methods, such as water flooding and hydraulic fracturing, are used to recover oil left behind by previously pumped reservoirs. The methods drive trapped oil toward the drill hole, but when the injected water reaches the production wells, most of the oil remains trapped in the rock, much like a sponge traps water.

“Our surfactants replace the crude oil within the rock with harmless compounds like brine that maintain the integrity of the rock formation,” Harwell said. “The ingredients we use are in things that people use every day to bathe, brush their teeth and wash their car. The chemicals we inject are not near the threat or hazard level of the compounds in the oil we are removing from the reservoir.”

The OU teams’ surfactant increases flooding efficiency even at concentrated levels of salinity. The OU team is the only group in the United States that focuses its work at such high salt levels.

“Most research focuses on salinity around a 3 to 5 percent threshold,” Harwell said. “We recently successfully formulated a surfactant system for up to 26 percent salinity.”

The OU research currently is focused on oil in Oklahoma’s Pennsylvanian aged sands that span much of the state and typically contain high concentrations of salt, ranging from 15 to 25 percent.

“That means there is a huge area with a tremendous amount of oil trapped in these formations,” Harwell said. “The Oklahoma Geological Survey estimates there were 84 billion barrels of original oil in these reservoirs and we have only extracted about 15 billion.”

The research team has successfully tested its surfactant formulations in several single-well operations and is now moving to small, multiple-well testing. If successful, the surfactant would enable small oil producers to recover more oil efficiently and cost effectively, while leaving the formations environmentally sound.

Karen Kelly | Newswise
Further information:
http://www.ou.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>