Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Caution Required for Gulf Oil Spill Clean-up

With millions of gallons crude oil being spewed into the Gulf of Mexico from the Deepwater Horizon oil spill, the focus now is on shutting down the leak. However, in the cleanup efforts to come, “extreme caution” must be exercised so as not to make a bad situation even worse, says a leading bioremediation expert with the Lawrence Berkeley National Laboratory (Berkeley Lab).

“The concentration of detergents and other chemicals used to clean up sites contaminated by oil spills can cause environmental nightmares of their own,” says Terry Hazen, a microbial ecologist in Berkeley Lab’s Earth Sciences Division who has studied such notorious oil-spill sites as the Exxon Valdez spill into Alaska’s Prince William Sound.

“It is important to remember that oil is a biological product and can be degraded by microbes, both on and beneath the surface of the water,” Hazen says. “Some of the detergents that are typically used to clean-up spill sites are more toxic than the oil itself, in which case it would be better to leave the site alone and allow microbes to do what they do best.”

The Deepwater Horizon oil rig leased by energy giant BP that exploded on April 20, is now estimated to be disgorging some 210,000 gallons of oil a day into the Gulf of Mexico. To contain the spreading oil slick and keep it from polluting the fragile ecosystems of the Gulf coast and the Mississippi delta, clean-up crews have deployed an array of chemical dispersants, oil skimmers and booms. They have also attempted to burn off some of the surface oil. Such aggressive clean-up efforts are fraught with unintended consequences, Hazen warns. He cites as prime examples the Amoco Cadiz and the Exxon Valdez disasters.

In 1978, an oil tanker, the Amoco Cadiz, split in two about three miles off the coast of Normandy, releasing about 227,000 tons heavy crude oil that ultimately stained nearly 200 miles of coastline. The spill-site was so large that only the areas of greatest economic impact were treated with detergents. Large areas in the more remote parts of the coast went untreated.

“The untreated coastal areas were fully recovered within five years of the Amoco Cadiz spill,” says Hazen. “As for the treated areas, ecological studies show that 30 years later, those areas still have not recovered.”

In March of 1989, the oil supertanker Exxon Valdez spilled 11 million gallons of crude oil into the Prince William Sound and impacted some 1,300 miles of coastline. It remains the largest oil spill in U.S. history. A combination of detergents and bioremediation were used in the clean-up. The detergents were nutrient rich, being high in phosphorous and nitrogen compounds. In addition, as part of the bioremediation effort, fertilizers were also used to promote microbial growth. After the first year, the treated areas were dramatically cleaner, Hazen says, but after the second year no improvements were observed. Long-term prospects for the treated area are grim.

Terry Hazen is a scientist with Berkeley Lab’s Earth Sciences Division where he heads the Ecology Department and Center for Environmental Biotechnology, and co-directs the Virtual Institute for Microbial Stress and Survival.

“What happened was that we took an oligotrophic (low nutrient) environment, and added lots of nutrients to it to speed up the degradation of the oil, which we probably did,” Hazen says. “However, we upset the ecological balance of the system, which could not handle the influx of nutrients. As a result, the severe environmental damage resulting from the spill is expected to persist for decades to come.”

While improvements to detergents have been made, including some degree of biodegradability, they remain nutrient rich and in some cases more toxic to the environment than crude oil.

“From a clean-up standpoint, right now we should be using sorbents to take up as much of the oil as possible,” Hazen says. “Then we need to gauge how quickly and completely this oil can be degraded without human intervention.”

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at

Additional Information

A public lecture by Terry Hazen entitled “Bioremediation: The Hope and the Hype for Environmental Cleanup” can be viewed on the Berkeley Lab YouTube site at

For more about the research of Terry Hazen, visit the Website at

Lynn Yarris | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>