Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The carbon dioxide trapper

11.11.2008
CO2 capture and storage is one of the leading points on the world agenda this year. Unless we can find a technology that can capture this problematic greenhouse gas and put it away safely, we are going to be in a bad way. The entire basis of our way of life depends on being able to balance our environmental accounts.

SINTEF’s Karl Anders Hoff feels that he is privileged to be able to work in such a central aspect of the debate over the environment and society. CO2 capture has been his exclusive field of study ever since the nineties, when he was working on his MSc thesis at NTNU.

Now he is project manager for SOLVit, an eight year-long research and development programme financed by Gasnova and the Norwegian industrial company Aker Clean Carbon, which is also coordinating the programme. With a total budget of NOK 317 million, the project is one of the biggest in the world of its type.

Hoff and his colleagues at SINTEF are developing chemical scrubbing processes for capturing carbon dioxide, the greenhouse gas that is spewed out by factories and as flue gases from coal and gas-fired power stations. It is estimated that the 4000 largest such plants in the world are responsible for 40 percent of global anthropogenic CO2 emissions to the atmosphere.

The aim of SOLVit is to lower the costs of CO2 capture and storage.

- But you aren’t starting completely from scratch, are you?

"No, SOLVit is a result of a number of our previous CO2 projects. These have shown us which direction we ought to be going in, and that it is necessary to work in several fields and on many levels.

As a result, several of the scientists in my department are now working on CO2. At the moment, there are 17 of us in a special team, and since this project is due to continue for eight years, there will probably be more in the future".

- So it is still too expensive to capture CO2 today?

"Yes, the process requires too much energy. A power station that is generating electricity loses about 15 – 20 percent of its output by capturing CO2 . which is sufficient to make it unprofitable. A CO2 capture plant also needs a high level of investment. These costs mean that CO2 capture is not being implemented, and this is what we have to do something about".

- What is the solution?

"The key lies in the chemicals used. These have to be capable of binding CO2, but not so strongly that the gas cannot be released later on. Compounds called amines are used today, but we are looking for other chemicals that have more suitable characteristics".

- How does this happen?

"We are talking about cold flue gases from a gas-fired power station, that need to be “scrubbed” of CO2. The flue gases flow through a pipe or column, into which chemicals are sprayed at the top so that they can diffuse through the gas and bind to the CO2. The CO2-rich liquid gathers at the bottom of the pipe, after which it needs to be boiled in order to separate out 99.9% pure CO2, while the chemical mix is recycled in order to capture more CO2. Processes of this sort are widely used today to scrub industrial flue gases, but never on the scale that would be needed for a plant that deals with the CO2 from a coal- or gas-fired power plant".

- Have you identified good new chemicals?

"We are on the way there, and we have ideas for chemicals that will reduce energy requirements by 50 percent. The challenge lies in “having our cake and eating it”; i.e. finding chemicals that can react rapidly with CO2 while also needing little energy to release the CO2 from them afterwards. Perhaps what we need is a liquid that captures CO2 and then separates into two different phases, or one that turns the gas into a solid".

- A brand-new test plant should help you there?

"Yes, as part of the programme, we are building a large laboratory at Tiller in Trondheim at a cost of NOK 42 million. SINTEF is putting in 25 percent of the cost of the lab from its own funds. This will be a unique pilot-scale facility, with a 33 metre-high tower and a 25 metre-high scrubbing column, the sort of height that would be needed in an industrial scrubber. This will give us useful results. We can check whether the chemicals that we use are broken down in the long run, and whether they are hazardous waste".

- What does your timetable for the future look like?

"SOLVit will work on both short and long-term solutions, and the project is divided into three phases. Within the next few years, first-generation capture plants will be built in Norway, the UK and Germany. In Norway and the UK the state will support the construction of these plants, and potential suppliers are already tendering for the job in Norway. We already have a new chemical ready, which is due to be tested while we are developing other new contenders. We will also start work on longer-term solutions for second and third-generation plants".

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>