Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The carbon dioxide trapper

11.11.2008
CO2 capture and storage is one of the leading points on the world agenda this year. Unless we can find a technology that can capture this problematic greenhouse gas and put it away safely, we are going to be in a bad way. The entire basis of our way of life depends on being able to balance our environmental accounts.

SINTEF’s Karl Anders Hoff feels that he is privileged to be able to work in such a central aspect of the debate over the environment and society. CO2 capture has been his exclusive field of study ever since the nineties, when he was working on his MSc thesis at NTNU.

Now he is project manager for SOLVit, an eight year-long research and development programme financed by Gasnova and the Norwegian industrial company Aker Clean Carbon, which is also coordinating the programme. With a total budget of NOK 317 million, the project is one of the biggest in the world of its type.

Hoff and his colleagues at SINTEF are developing chemical scrubbing processes for capturing carbon dioxide, the greenhouse gas that is spewed out by factories and as flue gases from coal and gas-fired power stations. It is estimated that the 4000 largest such plants in the world are responsible for 40 percent of global anthropogenic CO2 emissions to the atmosphere.

The aim of SOLVit is to lower the costs of CO2 capture and storage.

- But you aren’t starting completely from scratch, are you?

"No, SOLVit is a result of a number of our previous CO2 projects. These have shown us which direction we ought to be going in, and that it is necessary to work in several fields and on many levels.

As a result, several of the scientists in my department are now working on CO2. At the moment, there are 17 of us in a special team, and since this project is due to continue for eight years, there will probably be more in the future".

- So it is still too expensive to capture CO2 today?

"Yes, the process requires too much energy. A power station that is generating electricity loses about 15 – 20 percent of its output by capturing CO2 . which is sufficient to make it unprofitable. A CO2 capture plant also needs a high level of investment. These costs mean that CO2 capture is not being implemented, and this is what we have to do something about".

- What is the solution?

"The key lies in the chemicals used. These have to be capable of binding CO2, but not so strongly that the gas cannot be released later on. Compounds called amines are used today, but we are looking for other chemicals that have more suitable characteristics".

- How does this happen?

"We are talking about cold flue gases from a gas-fired power station, that need to be “scrubbed” of CO2. The flue gases flow through a pipe or column, into which chemicals are sprayed at the top so that they can diffuse through the gas and bind to the CO2. The CO2-rich liquid gathers at the bottom of the pipe, after which it needs to be boiled in order to separate out 99.9% pure CO2, while the chemical mix is recycled in order to capture more CO2. Processes of this sort are widely used today to scrub industrial flue gases, but never on the scale that would be needed for a plant that deals with the CO2 from a coal- or gas-fired power plant".

- Have you identified good new chemicals?

"We are on the way there, and we have ideas for chemicals that will reduce energy requirements by 50 percent. The challenge lies in “having our cake and eating it”; i.e. finding chemicals that can react rapidly with CO2 while also needing little energy to release the CO2 from them afterwards. Perhaps what we need is a liquid that captures CO2 and then separates into two different phases, or one that turns the gas into a solid".

- A brand-new test plant should help you there?

"Yes, as part of the programme, we are building a large laboratory at Tiller in Trondheim at a cost of NOK 42 million. SINTEF is putting in 25 percent of the cost of the lab from its own funds. This will be a unique pilot-scale facility, with a 33 metre-high tower and a 25 metre-high scrubbing column, the sort of height that would be needed in an industrial scrubber. This will give us useful results. We can check whether the chemicals that we use are broken down in the long run, and whether they are hazardous waste".

- What does your timetable for the future look like?

"SOLVit will work on both short and long-term solutions, and the project is divided into three phases. Within the next few years, first-generation capture plants will be built in Norway, the UK and Germany. In Norway and the UK the state will support the construction of these plants, and potential suppliers are already tendering for the job in Norway. We already have a new chemical ready, which is due to be tested while we are developing other new contenders. We will also start work on longer-term solutions for second and third-generation plants".

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>