Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The carbon dioxide trapper

11.11.2008
CO2 capture and storage is one of the leading points on the world agenda this year. Unless we can find a technology that can capture this problematic greenhouse gas and put it away safely, we are going to be in a bad way. The entire basis of our way of life depends on being able to balance our environmental accounts.

SINTEF’s Karl Anders Hoff feels that he is privileged to be able to work in such a central aspect of the debate over the environment and society. CO2 capture has been his exclusive field of study ever since the nineties, when he was working on his MSc thesis at NTNU.

Now he is project manager for SOLVit, an eight year-long research and development programme financed by Gasnova and the Norwegian industrial company Aker Clean Carbon, which is also coordinating the programme. With a total budget of NOK 317 million, the project is one of the biggest in the world of its type.

Hoff and his colleagues at SINTEF are developing chemical scrubbing processes for capturing carbon dioxide, the greenhouse gas that is spewed out by factories and as flue gases from coal and gas-fired power stations. It is estimated that the 4000 largest such plants in the world are responsible for 40 percent of global anthropogenic CO2 emissions to the atmosphere.

The aim of SOLVit is to lower the costs of CO2 capture and storage.

- But you aren’t starting completely from scratch, are you?

"No, SOLVit is a result of a number of our previous CO2 projects. These have shown us which direction we ought to be going in, and that it is necessary to work in several fields and on many levels.

As a result, several of the scientists in my department are now working on CO2. At the moment, there are 17 of us in a special team, and since this project is due to continue for eight years, there will probably be more in the future".

- So it is still too expensive to capture CO2 today?

"Yes, the process requires too much energy. A power station that is generating electricity loses about 15 – 20 percent of its output by capturing CO2 . which is sufficient to make it unprofitable. A CO2 capture plant also needs a high level of investment. These costs mean that CO2 capture is not being implemented, and this is what we have to do something about".

- What is the solution?

"The key lies in the chemicals used. These have to be capable of binding CO2, but not so strongly that the gas cannot be released later on. Compounds called amines are used today, but we are looking for other chemicals that have more suitable characteristics".

- How does this happen?

"We are talking about cold flue gases from a gas-fired power station, that need to be “scrubbed” of CO2. The flue gases flow through a pipe or column, into which chemicals are sprayed at the top so that they can diffuse through the gas and bind to the CO2. The CO2-rich liquid gathers at the bottom of the pipe, after which it needs to be boiled in order to separate out 99.9% pure CO2, while the chemical mix is recycled in order to capture more CO2. Processes of this sort are widely used today to scrub industrial flue gases, but never on the scale that would be needed for a plant that deals with the CO2 from a coal- or gas-fired power plant".

- Have you identified good new chemicals?

"We are on the way there, and we have ideas for chemicals that will reduce energy requirements by 50 percent. The challenge lies in “having our cake and eating it”; i.e. finding chemicals that can react rapidly with CO2 while also needing little energy to release the CO2 from them afterwards. Perhaps what we need is a liquid that captures CO2 and then separates into two different phases, or one that turns the gas into a solid".

- A brand-new test plant should help you there?

"Yes, as part of the programme, we are building a large laboratory at Tiller in Trondheim at a cost of NOK 42 million. SINTEF is putting in 25 percent of the cost of the lab from its own funds. This will be a unique pilot-scale facility, with a 33 metre-high tower and a 25 metre-high scrubbing column, the sort of height that would be needed in an industrial scrubber. This will give us useful results. We can check whether the chemicals that we use are broken down in the long run, and whether they are hazardous waste".

- What does your timetable for the future look like?

"SOLVit will work on both short and long-term solutions, and the project is divided into three phases. Within the next few years, first-generation capture plants will be built in Norway, the UK and Germany. In Norway and the UK the state will support the construction of these plants, and potential suppliers are already tendering for the job in Norway. We already have a new chemical ready, which is due to be tested while we are developing other new contenders. We will also start work on longer-term solutions for second and third-generation plants".

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>