Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing CO2 emissions needed to meet climate targets

26.06.2014

Technologies that are discussed controversially today may be needed to keep the future risks and costs of climate change in check.

Combining the production of energy from fossil fuels and biomass with capturing and storing the CO2 they emit (CCS) can be key to achieving current climate policy objectives such as limiting the rise of the global mean temperature to below 2 degrees Celsius.

This is shown by the most comprehensive study to date on technology strategies to combat climate change, published in a special issue of the journal Climatic Change. It is based on the analysis of 18 computer models by an international team of scientists under the roof of the Stanford Energy Modelling Forum (EMF 27).

“Versatile technologies seem to be most important to keep costs in check,“ says lead author Elmar Kriegler from the Potsdam Institute for Climate Impact Research. Both bioenergy and CCS can help reduce emissions from non-electric energy use that would be hard to decarbonize otherwise. Examples are the burning of coke in blast furnaces in the steel industry which can be equipped with CCS, and the combustion of petrol for transport which can be replaced by biofuels.

... more about:
»CCS »CO2 »Climatic »EMF »Energy »PIK »bioenergy »biomass »electricity »emissions »strategies

“If combined, energy from biomass and CCS can even result in withdrawing CO2 from the atmosphere and hence compensate remaining emissions across sectors and over time, because grasses and trees absorb CO2 before they are used to produce energy,” explains Kriegler.

In contrast, the availability of individual low carbon technologies in the electricity sector was shown to be less important. This is due to the fact that the electricity sector has a number of mitigation options, like nuclear, solar, and wind power, but also gas and coal power with CCS. So the lack of one of them can more easily be compensated by the others.

**Bioenergy and CCS are important to keep costs in check, but also have risks**

Many simulations in the study could not at all achieve emissions reductions in line with the 2 degrees target without the use of bioenergy combined with CCS. Among those that could, mitigation costs on average more than doubled in scenarios without CCS. “Concerns regarding bioenergy and CCS are highly relevant, but given the potential importance of these technologies, it becomes clear that their opportunities and risks urgently need to be investigated in greater detail,” Kriegler concludes.

Energy from biomass indeed risks competing with food production for land, and sequestering CO2 from power plants underground on an industrial scale is a yet unproven method.

**The technology strategies exist – but depend on climate policy**

A robust feature of the transformation that was identified in the study is an accelerated electrification of energy used by consumers, for instance by increasing the number of electric cars or of electric blast furnaces in the steel industry. Moreover, increasing energy efficiency has proven to be an important strategy to support climate policy, cutting mitigation costs in half. However, energy efficiency improvements alone, without strong policies to decarbonize energy production, would be insufficient to reach the 2 degrees target.

"Our study shows that there are technology strategies that can enable us to reach ambitious climate policy targets with some degree of confidence," says John Weyant, head of the Stanford Energy Modeling Forum. "But these strategies will only be possible if effective climate policies are implemented very very soon."

Article: Kriegler, E., Weyant, J.P., Blanford, G.J., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S.K., Tavoni, M., van Vuuren, D.P. (2014): The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123(3-4) [DOI: 10.1007/s10584-013-0953-7]

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Weitere Informationen:

http://link.springer.com/article/10.1007%2Fs10584-013-0953-7 - Weblink to the Article

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam

Further reports about: CCS CO2 Climatic EMF Energy PIK bioenergy biomass electricity emissions strategies

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>