Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Coral Save Our Oceans?

25.06.2014

TAU researchers discover soft coral tissue may help protect reefs against the hazardous effects of climate change

Coral reefs are home to a rich and diverse ecosystem, providing a habitat for a wide range of marine animals. But the increasing acidification of ocean water is jeopardizing the calcified foundations of these reefs, endangering the survival of thousands upon thousands of resident species.

New research by Prof. Yehuda Benayahu, Dr. Zehava Barkay, Prof. Maoz Fine, and their jointly supervised graduate student Yasmin Gabay of Tel Aviv University's Department of Zoology, Wolfson Applied Materials Research Center and the Interuniversity Institute for Marine Sciences in Eilat has uncovered the protective properties of soft coral tissue, which proved resilient when exposed to declining oceanic pH levels. The study, published in PLOS One, provides insight into the changing face of coral reefs threatened by dropping oceanic pH levels and may provide a new approach toward preserving the harder, calcified reef foundations.

Reefs and environmental change

Acidification is caused by increased carbon dioxide emissions in the atmosphere due to global change, fossil fuel burning, and other pollution. These emissions dissolve in the ocean, resulting in a slight lowering of oceanic pH levels. This produces changes to ocean water's carbon content, destroying the calcification of reef-building stony coral.

"The rise in temperature and ocean acidification are the main concerns of environmental change," said Prof. Benayahu, the Israel Cohen Chair in Environmental Zoology, whose TAU laboratory is home to one of the world's only soft coral (octocoral) research centers. "We know the value of reefs, the massive calcium carbonate constructions that act as wave breakers, and protect against floods, erosion, hurricanes, and typhoons. While alive, they provide habitats for thousands of living organisms, from sea urchins to clams, algae to fish. Reefs are also economically important in regions like Eilat or the Caribbean."

At first, the researchers examined the effects of lowered pH levels on living colonies of soft corals. Observing no significant effects on their physiology, Gabay thought it would be interesting to consider the effects of acidification on the skeleton of these soft corals.

"We really wanted to know if something could survive dropping pH levels in the future," said Gabay. "I was curious as to whether coral tissue could protect the inner coral skeleton, which is of most use in terms of reef construction, so I conducted an experiment using live soft corals and soft coral skeletons, which were placed in tanks containing ocean water with manipulated pH levels."

Using state-of-the-art microscopy, Gabay then scanned the tissue-covered skeletons and bare skeletons of soft corals exposed to experimental acidic conditions, the same conditions the International Panel of Climate Change predicts will occur 100 years from now if carbon dioxide emissions continue to rise. She found that the bare soft coral skeletons exhibited acidic stressed symptoms — large pockets burned into their microscopic corpuscular subunits — whereas the tissue-covered skeleton revealed almost no damage to its microscopic subunits.

"We found that the soft coral's tissue may indeed protect the skeleton from declining pH levels," said Yasmin Gabay. "The organism's internal environment apparently has a mechanism that protects against the acidic conditions."

The future of "the orchestra"

According to Prof. Benayahu, the future of soft-coral reefs is still unclear. Soft corals are not primary reef builders, because their skeletons are slow to calcify. Stony corals provide the massive skeletons that create reefs. Soft corals are replacing these reef builders, because they are somehow able to survive and live under extreme environmental conditions.

"A reef is like an orchestra. Many organisms interact to create harmony," said Prof. Benayahu. "Thousands of species live together and create life together. It is hard to predict what will happen if only soft corals survive, because they simply do not calcify at same rate as stony corals."

The researchers are currently studying the potential effects of soft coral displacement of stony coral species and the subsequent ramifications for reefs.

George Hunka | Eurek Alert!

Further reports about: Observing Zoology animals construction damage ecosystem environment species temperature

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>