Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

California's policies can significantly cut greenhouse gas emissions through 2030

23.01.2015

New Berkeley Lab model finds state will meet 2020 reduction goals

A new model of the impact of California's existing and proposed policies on its greenhouse gas (GHG) reduction goals suggests that the state is on track to meet 2020 goals, and could achieve greater emission reductions by 2030, but the state will need to do more to reach its 2050 climate goals.


The CALGAPS model shows greenhouse gas emissions through 2050 under four different scenarios.

Credit: Lawrence Berkeley National Laboratory

"The big news here is that not only will California meet its 2020 reduction goals under AB 32, but it could achieve reductions of at least 40 percent below that level in the 2030 time frame," said Jeffery Greenblatt, author of the study and a scientist at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). The paper, "Modeling California policy impact on greenhouse gas emissions," has been published in Energy Policy.

Greenblatt's research, which was funded in part by the California Air Resources Board (CARB), is the first attempt to comprehensively model all relevant policies in order to assess their combined effect on reducing California GHG emissions, especially through 2030. The research is intended to inform ongoing policy discussions in California by developing scenarios of GHG reductions that result from the aggregation of various policies. Scenario analysis can suggest which combinations of actual and proposed policies result in the largest emission reduction. The study also quantifies the reduction impact of individual policies.

The state's AB 32 legislation, the California Global Warming Solutions Act of 2006, requires a reduction in state GHG emissions by 2020 to its 1990 level of 431 million metric tons carbon dioxide equivalent per year (MtCO2e/year). Additionally, California Executive Order S-3-05 sets a target of reducing state GHG emissions to 80 percent below this level by 2050. Other state legislation governs specific areas such as transportation, electricity, and fuels.

Greenblatt's new model, dubbed CALGAPS (California LBNL GHG Analysis of Policies Spreadsheet), indicates that GHG emissions through 2020 could range from 317 to 415 MtCO2e/year, all still below the AB 32 target, "indicating that existing state policies will likely allow California to meet its target," he said.

By 2030, emissions could range from 211 to 428 MtCO2e/year. "Even if all modeled policies are not implemented, reductions could be sufficient to reduce emissions 40 percent below the 1990 level," Greenblatt said.

Although CALGAPS did not generally simulate policies that might be put in place after 2030, it did account for emissions through 2050, to understand the lasting impact of existing and potential policies that might be implemented over the next several years.

Accordingly, all of the scenarios Greenblatt modeled fall well short of the state's 80 percent reduction goal by 2050. However, various combinations of policies could allow California's cumulative emissions to remain very low through 2050, consistent with U.S. targets promulgated by the U.N.'s Intergovernmental Panel on Climate Change (IPCC) to keep global warming below 2 degrees Celsius. While additional analysis and policymaking will certainly be needed to meet 2050 goals, Greenblatt's study highlights the importance and potential of near-term action to work towards global climate stabilization targets.

Forty-nine policies in the CALGAPS model

CALGAPS is an energy model that simulates California's GHG and criteria pollutant emissions from 2010 to 2050. It uses historical and projected future trends in energy consumption, GHG fuel intensities, GHG emissions apart from energy, and policy-based assumptions to calculate how much GHG the state emits under different combinations of policies. The model incorporates 49 individual policies.

"The model divides policies into three types," Greenblatt said. "Committed policies (S1) are those that have the force of law and are being implemented, such as AB 1493, which mandates efficiency improvements in light-duty vehicles, building energy efficiency standards like Title 24, and the renewable portfolio standard (RPS), which mandates 33 percent renewable electricity generation use by 2020."

Federal policies such as the Clean Water Act also have a direct impact on state GHG emissions.

Uncommitted policies (S2), the second type, may lack detailed implementation plans or firm financial support, but have all been proposed, such as new efficient and zero net energy building targets, construction of the high-speed rail system, and initiatives by various agencies to, for example, increase biofuels use and continue progress in improving vehicle efficiency.

The third group, potential policies and technologies (S3), include more speculative changes, including several that extend policy initiatives in the committed and uncommitted groups. These policies include more aggressive vehicle efficiency improvements, building electrification, higher RPS targets, and expanded carbon sequestration activities, among others.

"One of the most important results of this study is that the GHG impact of each individual policy is quantified for the first time," Greenblatt said. "This allows policymakers to compare policies in different sectors and evaluate trade-offs."

Among the most impactful policies, the study finds--those with reductions in excess of 20 MtCO2e each in some years--are the AB 1493 vehicle efficiency standards, the 33 percent RPS target, building efficiency targets, phasing out imported coal electricity and phasing out hydrofluorocarbon gases.

Another important insight was the idea of looking at cumulative emissions. As the paper states: "Due to early emissions reductions, S3 achieves lower cumulative emissions in 2050 than a pathway that linearly reduces emissions between 2020 and 2050 policy targets."

The less ambitious S2 pathway achieves lower cumulative emissions through 2040. Greenblatt concluded: "Additional policies beyond those in S3 would be needed to continue reduction beyond 2050, but focusing on cumulative reductions may offer a more flexible policy framework."

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

Media Contact

Julie Chao
jhchao@lbl.gov
510-486-6491

 @BerkeleyLab

http://www.lbl.gov 

Julie Chao | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>