Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating tidal energy turbines' effects on sediments and fish

14.12.2010
The emerging tidal-energy industry is spawning another in its shadow: tidal-energy monitoring. Little is known about tidal turbines' environmental effects and environmentalists, regulators and turbine manufacturers all need more data to allow the industry to grow.

Engineers at the University of Washington have developed a set of numerical models, solved by computers, to study how changing water pressure and speed around turbines affects sediment accumulation and fish health. They will present their findings this week at the American Geophysical Union's meeting in San Francisco.

The current numerical models look at windmill-style turbines that operate in fast-moving tidal channels. The turbine blade design creates a low-pressure region on one side of the blade, similar to an airplane wing. A small fish swimming past the turbine will be pulled along with the current and so will avoid hitting the blade, but might experience a sudden change in pressure.

Teymour Javaherchi, a UW mechanical engineering doctoral student, says his model shows these pressure changes would occur in less than 0.2 seconds, which could be too fast for the fish to adapt.

If the pressure change happens too quickly the fish would be unable to control their buoyancy and, like an inexperienced scuba diver, would either sink to the bottom or float to the surface. During this time the fish would become disoriented and risk being caught by predators. In a worst-case scenario, severe pressure changes could cause internal hemorrhaging and death.

It's too early to say whether tidal turbines could harm fish in this way, Javaherchi said. The existing model uses the blade geometry from a wind turbine.

"The competition between the companies is very tight and they are hesitant to share the designs," Javaherchi said.

The researchers are open to working with any company that wants to use the technique to assess a particular turbine design.

Another set of numerical modeling looked at whether changes in speed of water flow could affect the settling of suspended particles in a tidal channel. Slower water speeds behind the turbine would allow more particles to sink to the bottom rather than being carried along by the current.

Javaherchi's modeling work suggests this is the case, especially for mid-sized particles of about a half-centimeter in diameter, about two-tenths of an inch. This would mean that a rocky bottom near a tidal turbine might become sandier, which could affect marine life.

The UW research differs from most renewable energy calculations that seek to maximize the amount of energy generated.

"We are [also] interested in the amount of energy that can be extracted by the turbines, but we are aware that the limiting factor for the development of these technologies is the perception by the public that they might have a big environmental impact," said Alberto Aliseda, a UW assistant professor of mechanical engineering and Javaherchi's thesis adviser.

As to whether any negative effects discovered for tidal turbines would be preventable, Aliseda said, "Absolutely."

"We need to establish what is the lowest pressure that the animals can sustain and the period of time that they need to adjust," Aliseda said. "The blade can be shaped to minimize this effect."

Aliseda says engineers in the wind-turbine industry are already adapting the UW work to look at interactions between wind turbines and bats, since high-frequency pressure changes are now thought to be responsible for the mysterious deaths of bats caused by wind turbines.

"Maybe the best turbine is not the one that extracts the most energy, but the one that extracts a reasonable amount of energy and at the same time minimizes the environmental effects," he said.

The research was funded by a Department of Energy grant to the Northwest National Marine Renewable Energy Center. Joseph Seydel, a Boeing engineer and UW graduate in mechanical engineering, also contributed to the research.

For more information, contact Aliseda at aaliseda@uw.edu or 206-543-4910 or Javaherchi at teymourj@uw.edu.

More information about UW tidal energy research is at http://depts.washington.edu/nnmrec/.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu
http://depts.washington.edu/nnmrec/

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>