Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating tidal energy turbines' effects on sediments and fish

14.12.2010
The emerging tidal-energy industry is spawning another in its shadow: tidal-energy monitoring. Little is known about tidal turbines' environmental effects and environmentalists, regulators and turbine manufacturers all need more data to allow the industry to grow.

Engineers at the University of Washington have developed a set of numerical models, solved by computers, to study how changing water pressure and speed around turbines affects sediment accumulation and fish health. They will present their findings this week at the American Geophysical Union's meeting in San Francisco.

The current numerical models look at windmill-style turbines that operate in fast-moving tidal channels. The turbine blade design creates a low-pressure region on one side of the blade, similar to an airplane wing. A small fish swimming past the turbine will be pulled along with the current and so will avoid hitting the blade, but might experience a sudden change in pressure.

Teymour Javaherchi, a UW mechanical engineering doctoral student, says his model shows these pressure changes would occur in less than 0.2 seconds, which could be too fast for the fish to adapt.

If the pressure change happens too quickly the fish would be unable to control their buoyancy and, like an inexperienced scuba diver, would either sink to the bottom or float to the surface. During this time the fish would become disoriented and risk being caught by predators. In a worst-case scenario, severe pressure changes could cause internal hemorrhaging and death.

It's too early to say whether tidal turbines could harm fish in this way, Javaherchi said. The existing model uses the blade geometry from a wind turbine.

"The competition between the companies is very tight and they are hesitant to share the designs," Javaherchi said.

The researchers are open to working with any company that wants to use the technique to assess a particular turbine design.

Another set of numerical modeling looked at whether changes in speed of water flow could affect the settling of suspended particles in a tidal channel. Slower water speeds behind the turbine would allow more particles to sink to the bottom rather than being carried along by the current.

Javaherchi's modeling work suggests this is the case, especially for mid-sized particles of about a half-centimeter in diameter, about two-tenths of an inch. This would mean that a rocky bottom near a tidal turbine might become sandier, which could affect marine life.

The UW research differs from most renewable energy calculations that seek to maximize the amount of energy generated.

"We are [also] interested in the amount of energy that can be extracted by the turbines, but we are aware that the limiting factor for the development of these technologies is the perception by the public that they might have a big environmental impact," said Alberto Aliseda, a UW assistant professor of mechanical engineering and Javaherchi's thesis adviser.

As to whether any negative effects discovered for tidal turbines would be preventable, Aliseda said, "Absolutely."

"We need to establish what is the lowest pressure that the animals can sustain and the period of time that they need to adjust," Aliseda said. "The blade can be shaped to minimize this effect."

Aliseda says engineers in the wind-turbine industry are already adapting the UW work to look at interactions between wind turbines and bats, since high-frequency pressure changes are now thought to be responsible for the mysterious deaths of bats caused by wind turbines.

"Maybe the best turbine is not the one that extracts the most energy, but the one that extracts a reasonable amount of energy and at the same time minimizes the environmental effects," he said.

The research was funded by a Department of Energy grant to the Northwest National Marine Renewable Energy Center. Joseph Seydel, a Boeing engineer and UW graduate in mechanical engineering, also contributed to the research.

For more information, contact Aliseda at aaliseda@uw.edu or 206-543-4910 or Javaherchi at teymourj@uw.edu.

More information about UW tidal energy research is at http://depts.washington.edu/nnmrec/.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu
http://depts.washington.edu/nnmrec/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>