Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating tidal energy turbines' effects on sediments and fish

14.12.2010
The emerging tidal-energy industry is spawning another in its shadow: tidal-energy monitoring. Little is known about tidal turbines' environmental effects and environmentalists, regulators and turbine manufacturers all need more data to allow the industry to grow.

Engineers at the University of Washington have developed a set of numerical models, solved by computers, to study how changing water pressure and speed around turbines affects sediment accumulation and fish health. They will present their findings this week at the American Geophysical Union's meeting in San Francisco.

The current numerical models look at windmill-style turbines that operate in fast-moving tidal channels. The turbine blade design creates a low-pressure region on one side of the blade, similar to an airplane wing. A small fish swimming past the turbine will be pulled along with the current and so will avoid hitting the blade, but might experience a sudden change in pressure.

Teymour Javaherchi, a UW mechanical engineering doctoral student, says his model shows these pressure changes would occur in less than 0.2 seconds, which could be too fast for the fish to adapt.

If the pressure change happens too quickly the fish would be unable to control their buoyancy and, like an inexperienced scuba diver, would either sink to the bottom or float to the surface. During this time the fish would become disoriented and risk being caught by predators. In a worst-case scenario, severe pressure changes could cause internal hemorrhaging and death.

It's too early to say whether tidal turbines could harm fish in this way, Javaherchi said. The existing model uses the blade geometry from a wind turbine.

"The competition between the companies is very tight and they are hesitant to share the designs," Javaherchi said.

The researchers are open to working with any company that wants to use the technique to assess a particular turbine design.

Another set of numerical modeling looked at whether changes in speed of water flow could affect the settling of suspended particles in a tidal channel. Slower water speeds behind the turbine would allow more particles to sink to the bottom rather than being carried along by the current.

Javaherchi's modeling work suggests this is the case, especially for mid-sized particles of about a half-centimeter in diameter, about two-tenths of an inch. This would mean that a rocky bottom near a tidal turbine might become sandier, which could affect marine life.

The UW research differs from most renewable energy calculations that seek to maximize the amount of energy generated.

"We are [also] interested in the amount of energy that can be extracted by the turbines, but we are aware that the limiting factor for the development of these technologies is the perception by the public that they might have a big environmental impact," said Alberto Aliseda, a UW assistant professor of mechanical engineering and Javaherchi's thesis adviser.

As to whether any negative effects discovered for tidal turbines would be preventable, Aliseda said, "Absolutely."

"We need to establish what is the lowest pressure that the animals can sustain and the period of time that they need to adjust," Aliseda said. "The blade can be shaped to minimize this effect."

Aliseda says engineers in the wind-turbine industry are already adapting the UW work to look at interactions between wind turbines and bats, since high-frequency pressure changes are now thought to be responsible for the mysterious deaths of bats caused by wind turbines.

"Maybe the best turbine is not the one that extracts the most energy, but the one that extracts a reasonable amount of energy and at the same time minimizes the environmental effects," he said.

The research was funded by a Department of Energy grant to the Northwest National Marine Renewable Energy Center. Joseph Seydel, a Boeing engineer and UW graduate in mechanical engineering, also contributed to the research.

For more information, contact Aliseda at aaliseda@uw.edu or 206-543-4910 or Javaherchi at teymourj@uw.edu.

More information about UW tidal energy research is at http://depts.washington.edu/nnmrec/.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu
http://depts.washington.edu/nnmrec/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>