Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating recharge of groundwater more precisely

28.02.2017

Researchers demonstrate that current models underestimate role of subsurface heterogeneity

A team of international researchers led by University of Freiburg hydrologist Dr. Andreas Hartmann suggests that inclusion of currently missing key hydrological processes in large-scale climate change impact models can significantly improve our estimates of water availability. The study shows that groundwater recharge estimates for 560 million people in karst regions in Europe, the Middle East and Northern Africa, are much higher than previously estimated from current large-scale models.


A karst region in Andalusia, Southern Spain. Photo: Matías Mudarra, Universität Malaga/Spanien

The scientists have shown that model estimates based on entire continents up to now have greatly underestimated in places the amount of groundwater that is recharged from fractions of surface runoff. This finding suggests that more work is needed to ensure sufficient realism in large-scale hydrologic models before they can be reliably used for local water management. The team has published their research findings in the scientific journal “Proceedings of the National Academy of Sciences (PNAS).“

Groundwater is a vital resource in many regions around the globe. For managing drinking water, the recharge rate is an important quantity for securing sustainable supplies. The researchers have compared two hydrological models that simulate groundwater recharge. One is a long-established global model with limited accounting for subsurface heterogeneity.

The other is a continental model the researchers have developed themselves that includes, for example, variability in the thickness of soils and different subsurface permeabilities. They have carried out the comparison for all of the karst regions in Europe, North Africa and the Middle East. Karst regions are known for their great degree of subsurface heterogeneity, because carbonate rock shows greater susceptibility to chemical weathering – a process that is known as karstification.

Karstification leads to varying soil depths and permeabilities. A comparison of the models' calculations with independent observations of groundwater recharge at 38 sites in the regions has shown that the model that accounts for heterogeneity produces more realistic estimates.

The researchers explain the reason for the difference between the two models as follows: In simulation, their newly developed model shows reduced fractions of surface According to the new model, a farmer in the Mediterranean region would potentially have up to a million liters more groundwater for extraction available in a year than the established model estimates, dependent on actual subsurface composition and the water demands of the local ecosystems.

When applied to the example of karst regions, the researchers' approach shows how it is possible to adapt global models used to predict water shortages, drought or floods to account more realistically for regional conditions. Scientists from the University of Freiburg, Canada's Victoria University, the University of Bristol in England and International Institute for Applied Systems Analysis in Austria took part in the study.

Original publication
Hartmann, A., Gleeson, T., Wada, Y., Wagener, T., 2017. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. In: “Proceedings of the National Academy of Sciences”; doi:10.1073/pnas.1614941114.

Contact:
Dr. Andreas Hartmann
Chair of Hydrology
University of Freiburg
Tel.: 0761/203-3520
E-Mail: andreas.hartmann@hydrology.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/pm.2017-02-28.25-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>