Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating recharge of groundwater more precisely

28.02.2017

Researchers demonstrate that current models underestimate role of subsurface heterogeneity

A team of international researchers led by University of Freiburg hydrologist Dr. Andreas Hartmann suggests that inclusion of currently missing key hydrological processes in large-scale climate change impact models can significantly improve our estimates of water availability. The study shows that groundwater recharge estimates for 560 million people in karst regions in Europe, the Middle East and Northern Africa, are much higher than previously estimated from current large-scale models.


A karst region in Andalusia, Southern Spain. Photo: Matías Mudarra, Universität Malaga/Spanien

The scientists have shown that model estimates based on entire continents up to now have greatly underestimated in places the amount of groundwater that is recharged from fractions of surface runoff. This finding suggests that more work is needed to ensure sufficient realism in large-scale hydrologic models before they can be reliably used for local water management. The team has published their research findings in the scientific journal “Proceedings of the National Academy of Sciences (PNAS).“

Groundwater is a vital resource in many regions around the globe. For managing drinking water, the recharge rate is an important quantity for securing sustainable supplies. The researchers have compared two hydrological models that simulate groundwater recharge. One is a long-established global model with limited accounting for subsurface heterogeneity.

The other is a continental model the researchers have developed themselves that includes, for example, variability in the thickness of soils and different subsurface permeabilities. They have carried out the comparison for all of the karst regions in Europe, North Africa and the Middle East. Karst regions are known for their great degree of subsurface heterogeneity, because carbonate rock shows greater susceptibility to chemical weathering – a process that is known as karstification.

Karstification leads to varying soil depths and permeabilities. A comparison of the models' calculations with independent observations of groundwater recharge at 38 sites in the regions has shown that the model that accounts for heterogeneity produces more realistic estimates.

The researchers explain the reason for the difference between the two models as follows: In simulation, their newly developed model shows reduced fractions of surface According to the new model, a farmer in the Mediterranean region would potentially have up to a million liters more groundwater for extraction available in a year than the established model estimates, dependent on actual subsurface composition and the water demands of the local ecosystems.

When applied to the example of karst regions, the researchers' approach shows how it is possible to adapt global models used to predict water shortages, drought or floods to account more realistically for regional conditions. Scientists from the University of Freiburg, Canada's Victoria University, the University of Bristol in England and International Institute for Applied Systems Analysis in Austria took part in the study.

Original publication
Hartmann, A., Gleeson, T., Wada, Y., Wagener, T., 2017. Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. In: “Proceedings of the National Academy of Sciences”; doi:10.1073/pnas.1614941114.

Contact:
Dr. Andreas Hartmann
Chair of Hydrology
University of Freiburg
Tel.: 0761/203-3520
E-Mail: andreas.hartmann@hydrology.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/pm.2017-02-28.25-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>