Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bullfrogs may help spread deadly amphibian fungus, but also die from it

18.06.2013
Amphibian populations are declining worldwide and a major cause is a deadly fungus thought to be spread by bullfrogs, but a two-year study shows they can also die from this pathogen, contrary to suggestions that bullfrogs are a tolerant carrier host that just spreads the disease.
When researchers raised the frogs from eggs in controlled experimental conditions, they found at least one strain of this pathogen, Batrachochytrium dendrobatidis, also called Bd or a chytrid fungus, can be fatal to year-old juveniles. However, bullfrogs were resistant to one other strain that was tested.

The findings, made by researchers at Oregon State University and the University of Pittsburgh, show that bullfrogs are not the sole culprit in the spread of this deadly fungus, and add further complexity to the question of why amphibians are in such serious jeopardy.

About 40 percent of all amphibian species are declining or are already extinct, researchers say. Various causes are suspected, including this fungus, habitat destruction, climate change, pollution, invasive species, increased UV-B light exposure, and other forces.

“At least so far as the chytrid fungus is involved, bullfrogs may not be the villains they are currently made out to be,” said Stephanie Gervasi, a zoology researcher in the OSU College of Science. “The conventional wisdom is that bullfrogs, as a tolerant host, are what helped spread this fungus all over the world. But we’ve now shown they can die from it just like other amphibians.”

The research suggests that bullfrogs actually are not a very good host for the fungus, which first was identified as a novel disease of amphibians in 1998. So why the fungus has spread so fast, so far, and is causing such mortality rates is still not clear.

“One possibility for the fungal increase is climate change, which can also compromise the immune systems of amphibians,” said Andrew Blaustein, a distinguished professor of zoology at OSU and international leader in the study of amphibian declines. “There are a lot of possible ways the fungus can spread. People can even carry it on their shoes.”

The average infection load of the chytrid fungus in bullfrogs, regardless of the strain, is considerably lower than that of many other amphibian species, researchers have found. Some bullfrogs can reduce and even get rid of infection in their skin over time.

While adult bullfrogs may be carriers of some strains of Bd in some areas, the researchers concluded, different hosts may be as or more important in other locations. International trade of both amphibian and non-amphibian animal species may also drive global pathogen distribution, they said.

The findings of this study were published in EcoHealth, a professional journal.
About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Andrew Blaustein | EurekAlert!
Further information:
http://oregonstate.edu
http://oregonstate.edu/ua/ncs/archives/2013/jun/bullfrogs-may-help-spread-deadly-amphibian-fungus-also-die-it

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>