Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Budding Research Links Climate Change and Earlier Flowering

17.11.2010
University of Cincinnati research published in the December issue of Ecological Restoration shows that global warming may be impacting the blooming cycle of plants.
According to research published today by a University of Cincinnati faculty member, native plants in southwestern Ohio are flowering significantly earlier, a finding he attributes, at least in part, to global warming.

University of Cincinnati biologist Denis Conover has done extensive plant studies in Hamilton County Parks and the Oxbow area. Here he studies a specimen at Burnet Woods.

UC biologist Denis Conover, field service associate professor, has spent countless hours walking the Shaker Trace Wetlands at Miami Whitewater Forest over the last 18 years to survey hundreds of different plant species.

Conover’s results, published in the December issue of Ecological Restoration, reveal that for species that were observed flowering during two distinct multi-year surveys, a significant number of wild plants (39 percent) bloomed earlier from 2005 to 2008 than when he recorded the same species’ blooming times from 1992 to 1996. Forty-five percent of the plants bloomed at the same time, and 16 percent bloomed later.

“I was doing a plant survey to see how the wetlands had changed over the years, and I noticed a lot of the plants were blooming earlier than they had in the previous survey,” said Conover.

The biologist pointed out that the mean annual temperature during the survey periods increased nearly 2 degrees from 53.38 degrees (11.88 C) to 55.27 degrees (12.93 C) in roughly a decade’s time.

“This is a big change for such a short time period,” said Conover. “There is a lot of data coming from all over the world indicating that biological communities are being impacted by warmer temperatures.”

To determine the impact of these changes, Conover said scientists would need to look closely at the complete ecological picture, including the impact on insects and birds that interact with the plants.

“If the right insects aren’t out at the right time, it could affect some of the cross-pollination that goes on,” he said. Or it could affect certain birds that depend on the seeds from those plants. Everything is interrelated. It is hard to say what impact it will have. We could also see things like more invasive species moving in because of the warmer conditions.”

Conover worked closely with UC’s Steve Pelikan, a math professor, who crunched all the data from the surveys. Pelikan said he found both the number of earlier-flowering plants and the temperature change from one survey to the next to be statistically significant.

Conover’s wild-plant research follows a similar pattern of findings from a recent 30-year garden-plant study in southwestern Ohio (McEwan, et al.). Pelikan points out that Conover’s published research is significant because it is one of the first to highlight the earlier flowering phenomena among plants in a natural habitat as opposed to a more-controlled garden setting.

“His is one of the first papers to reach this conclusion when working with native plants in a native setting,” said Pelikan.

Further substantiating the work, Conover has found that his observations also aren’t unique to the Shaker Trace Wetlands. He’s finding similar results as he compares data he collected from a plant survey in 2000 at Oxbow — a wetland at the confluence of the Great Miami and Ohio Rivers that spans southeastern Indiana and southwestern Ohio — to data from today.

He’s also noticed the presence of new invasive species in the Oxbow area such as Callery pear, Japanese stiltgrass and Japanese chaff flower.

Conover is no stranger to biological restoration. He’s been performing plant surveys, invasive plant control research, and other ecological restoration work as a “hobby” for 25 years. In his day job, Conover teaches several different freshman biology courses to hundreds of UC students in the McMicken College of Arts and Sciences each year. He started teaching at UC’s old University College in 1990.

Conover earned his bachelor's and master’s degrees in biology at the University of Dayton and his doctorate in biological sciences at UC, specializing in ecological plant physiology.

He submitted additional wetland research this year and expects publication in 2011 with regard to his study of turtles and beavers in wetland environments. His other recent published work includes:

Restoring biodiversity by lowering deer numbers at Shawnee Lookout
Changes in a restored wetland over 18 years of Management
December Issue of Ecological Restoration (subscription required)
More details and contact information for Denis Conover

John Bach | EurekAlert!
Further information:
http://www.uc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>