Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking down barriers – An appeal to conserve migratory ungulates in Mongolia´s grasslands

03.06.2014

Mongolian and international conservationists, including researchers from the Vetmeduni Vienna, have joined forces to raise awareness of the global importance of Mongolia´s steppes. The Gobi-Steppe Ecosystem is home to a unique diversity of animal and plant species, among them several large migratory mammals.

The scientists recommend reconciling the rapid infrastructure development that is currently taking place in Mongolia with the needs of migratory species, such as Asiatic wild ass and Mongolian gazelles. Their recommendations are published online in the journal Conservation Biology.


Mongolian wild ass are among the most mobile of terrestrial mammals, ranging over thousands of square kilometers each year. Photo: Petra Kaczensky / Vetmeduni Vienn

The Gobi-Steppe Ecosystem is world renowned for its populations of migratory ungulates, which cover great distances in search of forage. Researchers at the Research Institute of Wildlife Ecology at Vetmeduni Vienna have documented, that in just one year an individual wild ass can range over an area of 70,000 km2.

“Wild asses and gazelles have to be permanently on the move and travel very long distances to find enough food. Rainfall is highly variable in this region. As a consequence pastures are patchy and unpredictable in space and time,” explains Petra Kaczensky, one of the authors from the Vetmeduni Vienna.

Barriers to migration

Although vast stretches of land remain largely unaltered, migratory species face a number of obstacles that disrupt their journey and affect their ability to survive and reproduce in this highly variable environment. The main obstacles of the recent past are fences erected along the international borders with Russia and China and the Trans Mongolian Railroad.

The railroad fence now constitutes the de facto eastern border for the Asiatic wild ass, cutting the population off from its former much larger range to the east. Gazelles have also been largely restricted to either side of the railroad, but when they do attempt to cross they often get entangled or turned away. On its rapid path of economic development, Mongolia continues to build roads and new railway lines that are expected to threaten the ecological phenomenon of wildlife migration, if not carefully planned for.

Science can inform regional planning

Structural modifications could be made to fences, unnecessary fences could be removed in areas where there are no livestock, and planned railway lines could be re-routed to avoid sensitive areas. “We advocate a development process that minimizes negative effects on the integrity of the ecosystems such as following existing roads between villages to avoid large uninhabited regions while also incorporating the necessary designs so that they do not become new barriers; at the same time known barriers need to be removed,” says corresponding author Kirk Olson from Fauna & Flora International, a global conservation organization based in the UK. “Regional planners need to think big - meaning on the scale of the migrations,” adds author Nyamsuren Batsaikhaan from the National University of Mongolia.

A responsibility to link science and policy

Research into the movement and habitat requirements of the species roaming Mongolia´s Gobi-Steppe Ecosystem is ongoing, but needs to continue to identify potential conflicts between development efforts and biodiversity conservation requirements. Science can and should play a role in planning processes, according to Chris Walzer of the Vetmeduni Vienna, another author of the paper.

“It is also among the responsibilities of a university to provide that link between science and policy making. Scientists can provide constructive inputs in fields such as wildlife management and conservation,” Walzer emphasizes. “I think that if we do not translate our findings into practical advice that non-scientists can use, we have failed in our educational mission.” In the case of Mongolia, the authors are hopeful that joint efforts will lead to the preservation of the country´s outstanding natural heritage for future generations.

The article “Conserving the World’s Finest Grassland Amidst Ambitious National Development” by N. Batsaikhan et al. was recently published in the journal Conservation Biology. http://onlinelibrary.wiley.com/doi/10.1111/cobi.12297/abstract

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Petra Kaczensky
Research Institute for Wildlife and Ecology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
M: +43 6767379650
petra.kaczensky@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>