Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking down barriers – An appeal to conserve migratory ungulates in Mongolia´s grasslands

03.06.2014

Mongolian and international conservationists, including researchers from the Vetmeduni Vienna, have joined forces to raise awareness of the global importance of Mongolia´s steppes. The Gobi-Steppe Ecosystem is home to a unique diversity of animal and plant species, among them several large migratory mammals.

The scientists recommend reconciling the rapid infrastructure development that is currently taking place in Mongolia with the needs of migratory species, such as Asiatic wild ass and Mongolian gazelles. Their recommendations are published online in the journal Conservation Biology.


Mongolian wild ass are among the most mobile of terrestrial mammals, ranging over thousands of square kilometers each year. Photo: Petra Kaczensky / Vetmeduni Vienn

The Gobi-Steppe Ecosystem is world renowned for its populations of migratory ungulates, which cover great distances in search of forage. Researchers at the Research Institute of Wildlife Ecology at Vetmeduni Vienna have documented, that in just one year an individual wild ass can range over an area of 70,000 km2.

“Wild asses and gazelles have to be permanently on the move and travel very long distances to find enough food. Rainfall is highly variable in this region. As a consequence pastures are patchy and unpredictable in space and time,” explains Petra Kaczensky, one of the authors from the Vetmeduni Vienna.

Barriers to migration

Although vast stretches of land remain largely unaltered, migratory species face a number of obstacles that disrupt their journey and affect their ability to survive and reproduce in this highly variable environment. The main obstacles of the recent past are fences erected along the international borders with Russia and China and the Trans Mongolian Railroad.

The railroad fence now constitutes the de facto eastern border for the Asiatic wild ass, cutting the population off from its former much larger range to the east. Gazelles have also been largely restricted to either side of the railroad, but when they do attempt to cross they often get entangled or turned away. On its rapid path of economic development, Mongolia continues to build roads and new railway lines that are expected to threaten the ecological phenomenon of wildlife migration, if not carefully planned for.

Science can inform regional planning

Structural modifications could be made to fences, unnecessary fences could be removed in areas where there are no livestock, and planned railway lines could be re-routed to avoid sensitive areas. “We advocate a development process that minimizes negative effects on the integrity of the ecosystems such as following existing roads between villages to avoid large uninhabited regions while also incorporating the necessary designs so that they do not become new barriers; at the same time known barriers need to be removed,” says corresponding author Kirk Olson from Fauna & Flora International, a global conservation organization based in the UK. “Regional planners need to think big - meaning on the scale of the migrations,” adds author Nyamsuren Batsaikhaan from the National University of Mongolia.

A responsibility to link science and policy

Research into the movement and habitat requirements of the species roaming Mongolia´s Gobi-Steppe Ecosystem is ongoing, but needs to continue to identify potential conflicts between development efforts and biodiversity conservation requirements. Science can and should play a role in planning processes, according to Chris Walzer of the Vetmeduni Vienna, another author of the paper.

“It is also among the responsibilities of a university to provide that link between science and policy making. Scientists can provide constructive inputs in fields such as wildlife management and conservation,” Walzer emphasizes. “I think that if we do not translate our findings into practical advice that non-scientists can use, we have failed in our educational mission.” In the case of Mongolia, the authors are hopeful that joint efforts will lead to the preservation of the country´s outstanding natural heritage for future generations.

The article “Conserving the World’s Finest Grassland Amidst Ambitious National Development” by N. Batsaikhan et al. was recently published in the journal Conservation Biology. http://onlinelibrary.wiley.com/doi/10.1111/cobi.12297/abstract

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Petra Kaczensky
Research Institute for Wildlife and Ecology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
M: +43 6767379650
petra.kaczensky@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>