Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BP Deepwater Horizon oil spill exacerbated existing environmental problems in Louisiana marshes

26.06.2012
The BP Deepwater Horizon oil spill temporarily worsened existing manmade problems in Louisiana's salt marshes such as erosion, but there may be cause for optimism, according to a new study.

A study appearing online Monday in the Proceedings of the National Academy of Sciences found the 2010 spill killed off salt marsh plants 15 to 30 feet from the shoreline and this plant die off resulted in a more-than-doubled rate of erosion along the marsh edge and subsequent permanent marsh habitat loss. Vegetation farther from shore was relatively untouched by the incoming oil.

"Louisiana is already losing about a football field worth of wetlands every hour, and that was before the spill," said Brian Silliman, a University of Florida biologist and lead author of the study. "When grasses die from heavy oiling, their roots, that hold the marsh sediment together, also often die. By killing grasses on the marsh shoreline, the spill pushed erosion rates on the marsh edge to more than double what they were before. Because Louisiana was already experiencing significant erosive marsh loss due to the channelization of the Mississippi, this is a big example of how multiple human stressors can have additive effects."

Marshes are the life's blood of coastal Louisiana because they act as critical nurseries for the shrimp, oysters and fish produced in these waters while helping to sequester significant amounts of carbon. They also protect coastlines from flooding and guard estuarine waters from nutrient pollution.

But the marshes have been suffering for decades as a result of the channelization of the Mississippi River, which has starved them from needed sediments to deter erosion.

Then came the oil spill.

Researchers observed minimal oil on the surfaces of grasses located more than 45 feet from the shoreline, indicating that significant amounts of oil did not move into interior marshes.

Instead, the researchers found that the tall grasses along the marsh edge acted as wall-like trap to incoming oil slicks, concentrating oil on the marsh edge. This concentration of oil on the shoreline protected interior marshes from oiling but worsened already extreme erosion on the shoreline. As oiled plants died, their roots that hold tight to the sediment perished as well. Already eroding sediment was now exposed to wave action without the effect of the gripping plant roots.

The result: elevated erosion rates for 1.5 years that averaged more than 10 feet of shoreline loss per year -- double the natural rate for this area.

The encouraging results, Silliman said, included significant declines in the oil concentration on the marsh surface over 1.5 years and that unaffected, healthy marsh plants in the marsh interior quickly grew back into marsh die-off areas that had not yet been lost due to heightened erosion.

When the new marsh plant growth grew into the erosive edge of the marsh, Silliman said, the recolonization of the area by the gripping plant roots shut down the oil-elevated erosion rates and returned them to those seen at marsh sites where oil coverage did not occur.

The researchers also found that polyaromatic hydrocarbons, or PAHs, a carcinogenic byproduct of oil, was 100 percent greater at the Barateria Bay testing site than in reference marshes. This finding provides chemical evidence to support their visual observations that marshes in the affected areas were laden with oil while those in reference areas did not receive significant oiling.

By adding Biochar, a charcoal-based substance, to marshlands, Silliman's team is also using new bioremediation tactics to try to break down PAHs into organic material. If this method is successful, he said, it could be used to supplement naturally occurring microbes in the marsh mud that already oxidize the oil carcinogen. The team is soon to publish those findings.

"This is a new idea applied toward cleaning up PAHs," said UF chemistry professor Andrew R. Zimmerman, a co-author on the paper. "It's possible there's a bunch lurking at the bottom of the bay."

Writer: Claudia Adrien, c.adrien@research.ufl.edu
Source: Brian Silliman, brs@ufl.edu

Brian Silliman | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>