Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Borrowing From Whales to Engineer a New Fluid Sensor

03.03.2015

How can a humpback whale and a device that works on the same principle as the clicker that starts your gas grill help an unmanned aerial vehicle (UAV) fly longer and with more stability?

Well, it all starts with biological structures called tubercles that the whale uses for its unique maneuvers in the ocean. Felix Ewere, a doctoral student at The University of Alabama in Huntsville (UAH), made a mechanical version of the wavy-looking biological structures and attached it to a piezoelectric energy harvester.


Michael Mercier / UAH

Felix Ewere, left, and Dr. Gang Wang near a wind tunnel they use for testing in UAH’s Olin B. King Technology Hall. Inside the tunnel is their latest miniaturization effort, while Ewere holds the intermediate effort and Dr. Wang holds the initial device constructed.

The piezoelectric principles the harvester uses convert mechanical action into electricity just like the red piezoelectric button on your gas grill does.

Humpback whales have rounded tubercles located on the leading edge of their fins.

“For anything under the action of fluid, two forces are created – a lift force and a drag force,” Ewere says. “For the humpback whale, these tubercles increase the lift and reduce the drag as it moves through the water. They are what enables it to breech the surface of the water.”

Borrowing from the whales, the new device is used to harvest energy and can be employed as an airflow or fluid speed and direction-sensing device. So UAV designers can use the “galloping piezoelectric” principle to design better craft by placing sensor piezoelectric devices all over their models to test them to determine how they behave in the fluid currents of air. Plus, they can attach the devices to the UAV as harvesters to generate power to extend its battery range.

Ewere has a bachelor’s in mechanical engineering and a master’s in aerospace engineering, and for his doctorate he joined his fluid physics experience to the piezoelectric expertise of his doctoral advisor, assistant professor of mechanical and aerospace engineering Dr. Gang Wang.

“He actually introduced me to piezoelectrics,” Ewere says.

The initial problem was to determine whether greater efficiency using wind could be attained so that the piezoelectrics could better harvest energy. Dr. Wang says he presented the problem, but Ewere is the one who came up with an interesting solution that ultimately took the pair in another direction.

“I just threw the question to him, and he found the answer for me, which is using this biologically inspired concept,” Dr. Wang says. “One day, he just knocked on my door and said, ‘Dr. Wang I want to try this one.’ ”

Next came wind tunnel experiments.

“We were trying to get more force and induce more strain by using this idea” to improve energy harvesting ability, Ewere says. It turned out that efficiency wasn’t increased but the pair discovered through experimentation that the devices could serve as a form of passive control. That makes them useful as measuring devices for air flow speed and direction.

“This is a new kind of flow sensor,” Ewere says. “A regular flow sensor will just tell you the magnitude of the wind, but this also shows you the direction.”

Work has progressed on miniaturizing the components to widen applications. Placing the sensors arrays on a helicopter, for example, could help engineers determine aerodynamics that could improve low speed and low altitude flight stability or reduce its acoustic signature.

Its energy harvesting capabilities are also being explored for use to charge the batteries that power small devices to track bird populations, extending their research life.

Now the theoretical work and design concept phases are drawing to a close and Dr. Wang is looking for applications funding.

“For three or four years now, we have been drawing up the basics of this, and we have done the basic research,” Dr. Wang says. “Now I have the tangible benefits for it, but to take it to the next level I need a boost from an interested funding agency.”

Contact Information
Jim Steele
Research Writer/Editor
jim.steele@uah.edu
Phone: 256-824-2772

Jim Steele | newswise
Further information:
http://www.uah.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>